PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-criteria comparative analysis of the use of subtractive and additive technologies in the manufacturing of offshore machinery components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic development of additive manufacturing technologies, especially over the last few years, has increased the range of possible industrial applications of 3D printed elements. This is a consequence of the distinct advantages of additive techniques, which include the possibility of improving the mechanical strength of products and shortening lead times. Offshore industry is one of these promising areas for the application of additive manufacturing. This paper presents a decision support method for the manufacturing of offshore equipment components, and compares a standard subtractive method with an additive manufacturing approach. An analytic hierarchy process was applied to select the most effective and efficient production method, considering CNC milling and direct metal laser sintering. A final set of decision criteria that take into account the specifics of the offshore industry sector are provided.
Rocznik
Tom
Strony
71--81
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Gdańsk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing and Production Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology Faculty of Mechanical Engineering Department of Manufacturing and Production Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. ASTM, ISO. ASTM52900-15 (2015): Standard Terminology for Additive Manufacturing—General Principles—Terminology, ASTM International, West Conshohocken, PA.
  • 2. Bergsma J.M., Van der Zalm M., Pruyn J.F.J. (2016): 3D-Printing and the Maritime Construction Sector. In: 10th Symposium on High-Performance Marine Vehicles, HIPER 16, Cortona, 17–19 oktober 2016; Part of collection Maritime Archive, p. 428–442.
  • 3. Bocheński T., Deja M., Siemiątkowski M.S. (2016): Planning Strategies for Complex Shape Pocket Milling in Mechanical Parts (in Polish). Mechanik, 89(10), 1496–1497.
  • 4. Burek J., Żurek P., Żurawski K. (2016): The Influence of Inclination Angle on Surface Roughness with Milling Using a Ball Mill (in Polish). Mechanik, 10, 1478–1479.
  • 5. Chen X., Zhao J., Dong Y., Han S., Li A., Wang D. (2013): Effects of Inclination Angles on Geometrical Features of Machined Surface in Five-Axis Milling. Intl. Journal of Advanced Manufacturing Technology, 65, 1721–1733.
  • 6. Çimren E., Çatay B., Budak E. (2007): Development of a Machine Tool Selection System Using AHP. The International Journal of Advanced Manufacturing Technology, 35(3-4), 363–376.
  • 7. Deja M., Dobrzyński M., Flaszyński P., Haras J., Zieliński D. (2018): Application of Rapid Prototyping Technology in the Manufacturing of Turbine Blade with Small Diameter Holes. Polish Maritime Research, 25(s1), 119-123.
  • 8. Deja M., Siemiątkowski M.S. (2018): Machining Process Sequencing and Machine Assignment in Generative FeatureBased CAPP for Mill-Turn Parts. Journal of Manufacturing Systems, 48, 49–62.
  • 9. Deja M., Siemiątkowski M.S., Sender P. (2017): Comparative Study of Machining Technology Selection to Manufacture Large-Size Components of Offshore Constructions. Polish Maritime Research, 24(s1), 38–45.
  • 10. Deja M., Zieliński D. (2020): A Pilot Study to Assess an In-Process Inspection Method for Small Diameter Holes Produced by Direct Metal Laser Sintering. Rapid Prototyping Journal, 26(2), 418–436.
  • 11. DNVGL-CG-0197, Class Guideline, Additive Manufacturing - Qualification and Certification Process for Materials and Components, available at: http://www.dnvgl.com (accessed 28 March 2019).
  • 12. EOS GmbH - Electro Optical Systems, EOS NickelAlloy IN718, available at: https://drukarki3d.pl/wp-content/ uploads/2015/09/karta-materia%C5%82owa-EOSNickelAlloy-IN718-ENG.pdf (accessed 9 April 2019).
  • 13. EOS GmbH - Electro Optical Systems, EOS MaragingSteel MS1, available at: https://drukarki3d.pl/wp-content/ uploads/2015/09/karta-materia%C5%82owa-EOSMaragingSteel-MS1-ENG.pdf (accessed 10 May 2019).
  • 14. Flaszynski P., Doerffer P., Piotrowicz M. (2017): Effect of Jet Vortex Generators on Shock Wave Induced Separation on Gas Turbine Profile. In: Proceedings of the 13th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows, 7–11 May 2017, Okinawa, Japan.
  • 15. Gebhardt A. (2011): Understanding Additive Manufacturing. Carl Hanser Verlag, Munich 2012, p. 2.
  • 16. Grzesik W. (2015): Effect of Surface Topography Features of Machine Parts on Machine Service (in Polish). Mechanik, 8(9), 587–593.
  • 17. Grzesik W. (2019): Influence of Surface Roughness on the Fatigue Life of Machine Elements – Experimental Investigations and Simulations (in Polish). Mechanik, 5(6), 307–313.
  • 18. Iftikhar A., Khan M., Alam K., Imran Jaffery S.H., Ali L., Ayaz Y., Khan A. (2013): Turbine Blade Manufacturing Through Rapid Tooling (RT) Process and its Quality Inspection. Materials and Manufacturing Processes, 28(5), 534–538.
  • 19. Kostidi E., Nikitakos N. (2018): Is It Time for the Maritime Industry to Embrace 3D Printed Spare Parts? TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 12, 3, p. 557–564.
  • 20. Lampart P., Kosowski K., Piwowarski M., Jędrzejewski Ł. (2009): Design Analysis of Tesla Micro-Turbine Operating on a Low-Boiling Medium. Polish Maritime Research, Special issue S1, pp. 28–33.
  • 21. Lloyd’s Register Group Limited and TWI Ltd (2017): Guidance Notes for the Certification of Metallic Parts made by Additive Manufacturing. Published by Lloyd’s Register Group Limited. Registered office (Reg. no. 08126909), 71 Fenchurch Street, London, EC3M 4BS, United Kingdom, p. 1–9.
  • 22. Mognol P., Rivette M., Jégou L., Lesprier T. (2007): A First Approach to Choose Between HSM, EDM and DMLS Processes in Hybrid Rapid Tooling. Rapid Prototyping Journal, 13(1), 7–16.
  • 23. Navrotsky V., Graichen A., Brodin H. (2015): Industrialisation of 3D Printing (Additive Manufacturing) for Gas Turbine Components Repair and Manufacturing. VGB PowerTech, 12, 48–52.
  • 24. Piotrowski N., Barylski A. (2016): Multi-Criteria Robot Selection Problem for an Automated Single-Sided Lapping System. In Mechatronics: Ideas, Challenges, Solutions and Applications. Springer, Cham, p. 1–13.
  • 25. Saaty, T.L. (1990): Decision Making For Leaders: The Analytic Hierarchy Process for Decisions in a Complex World, RWS Publications, 1990.
  • 26. Sercombe T.B., Li X. (2016): Selective Laser Melting of Aluminium and Aluminium Metal Matrix Composites. Materials Technology, 31(2), 77–85.
  • 27. Strickland J.D. (2016): Applications of Additive Manufacturing in the Marine Industry. In: Proceedings of PRADS2016, 4th – 8th September, 2016 Copenhagen, Denmark, p. 1–5.
  • 28. Tan X., Kok Y., Tor S.B., Chua C.K. (2014): Application of Electron Beam Melting (EBM) in Additive Manufacturing of an Impeller. In: Proceedings of the 1st International Conference on Progress in Additive Manufacturing (Pro-AM 2014), Singapore: Research Publishing Services, p. 327–332.
  • 29. Tekinalp H.L., Kunc V., Valez-Garcia G.M., Duty C.E., Love L.J., Naskar A.K., Blue C.A., Ozcan S. (2014): Highly Oriented Carbon Fiber–Polymer Composites Via Additive Manufacturing. Composites Science and Technology, 105, 144–150.
  • 30. Vaezi M., Safaeian D., Chua C.K. (2011): Gas Turbine Blade Manufacturing by Use of Epoxy Resin Tooling and Silicone Rubber Molding Techniques. Rapid Prototyping Journal, 17(2), 107–115.
  • 31. Velasquez M., Hester P.T. (2013): An Analysis of MultiCriteria Decision Making Methods. International Journal of Operations Research, 10(2), 56–66.
  • 32. Zhao X., Song B., Fan W., Zhang Y., Shi Y. (2016): Selective Laser Melting of Carbon/AlSi10Mg Composites: Microstructure, Mechanical and Electronical Properties. Journal of Alloys and Compounds, 665, 271–281.
  • 33. Zieliński D. (2020): 3D Printing of Polymers on an Industrial Scale in SLS Technology (in Polish). Tworzywa Sztuczne w Przemyśle, 55(1), 71–72.
  • 34. http://akrostal.pl/stale/1-658234crnimo6/?print=pdf (accessed 3 September 2019).
  • 35. https://www.dostal.com.pl/stal-do-ulepszania-cieplnego. html (accessed 3 September 2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c5313a0-9794-4778-9d45-600c247eb24a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.