PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Structural stability of thin-walled austempered ductile iron castings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structural stability of ausferrite in thin-walled Austempered Ductile Iron (ADI) castings with 5 mm wall thickness is compared to a reference casting with 25 mm wall thickness. The thin-walled and reference castings were first austenitized between 850 and 925 °C, and then austempered between 250 and 380 °C. X-ray diffraction (XRD) investigations with changing temperature were performed between - 260 up to + 450 °C to investigate the change of phase fraction, lattice parameters and strain in ausferrite. The role of the austenitization temperature on structural stability and homogeneity of the investigated ADI castings has been provided. In addition, the problem of the occurrence of “blocky” high-carbon austenite that was not completely involved during austempering, has been taken into account. Finally, it has been shown that the thin-walled castings provided higher structural homogeneity and stability if compared to the reference castings.
Rocznik
Strony
art. no. e79, 2023
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Faculty of Foundry Engineering, Department of Cast Alloys and Composites Engineering, AGH University of Science and Technology, Reymonta St. 23, 30‑065 Krakow, Poland
  • Faculty of Physics and Applied Computer Science, Department of Solid State Physics, AGH University of Science and Technology, Mickiewicza Av. 30, 30‑059 Krakow, Poland
  • Research Institute CNR-ICMATE, via R. Cozzi 53, 20125 Milan, Italy
  • Faculty of Foundry Engineering, Department of Cast Alloys and Composites Engineering, AGH University of Science and Technology, Reymonta St. 23, 30‑065 Krakow, Poland
  • Faculty of Foundry Engineering, Department of Cast Alloys and Composites Engineering, AGH University of Science and Technology, Reymonta St. 23, 30‑065 Krakow, Poland
autor
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska St. 73, 30-418 Krakow, Poland
Bibliografia
  • 1. Bamberger M. Encyclopedia of iron, steel and their alloy. 5th ed. New York: Taylor and Francis; 2016. p. 196-216.
  • 2. Holtzer M, Gorny M, Kmita A. The influence of motorisation on the climate warming. Int J Global Warm. 2017;11:495-514.
  • 3. Myszka D, Cybula L, Wieczorek A. Influence of heat treatment conditions on microstructure and mechanical properties of austempered ductile iron after dynamic deformation test. Arch Metall Mater. 2014;59:1181-9.
  • 4. Chernyshev AN, Kaplina IN, Serapin MI. Surface hardening with remelting of functional surfaces of cast iron camshafts. Met Sci Heat Treat. 1996;38:440-2.
  • 5. Tanaka Y, Kage H. Development and application of austempered spheroidal graphite cast iron. Mater Trans JIM. 1992;33:543-57.
  • 6. Gorny M, Stefanescu DM. ASM Handbook. Cast iron science and technology. ASM International; 2017. pp. 626-628.
  • 7. Gorny M, Gondek Ł, Tyrała E, Angella G, Kawalec M. Structure homogeneity and thermal stability of austempered ductile iron. Metall Mater Trans A. 2021;52:2228-37.
  • 8. Rouns TN, Rundman KB, Moore DM. On the structure and properties of austempered ductile cast iron. AFS Trans. 1984;121:815-40.
  • 9. Dubensky W, Rundman KB. An electron microscope study of carbide formation on austempered ductile iron. AFS Trans. 1985;93:389-94.
  • 10. Donnini R, Fabrizi A, Bonollo F, Zanardi F, Angella G. Assessment of the microstructure evolution of an austempered ductile iron during austempering process through strain hardening analysis. Met Mater Int. 2017;23:855-64.
  • 11. Fraś E, Gorny M, Tyrała E, Lopez HF. Effect of nodule count on austenitising and austempering kinetics of ductile iron castings and mechanical properties of thin walled iron castings. Mater Sci Tech. 2012;28:1391-6.
  • 12. Gorny M, Tyrała E, Lopez H. Effect of copper and nickel on the transformation kinetics of austempered ductile iron. J Mater Eng Perform. 2014;23:3505-10.
  • 13. Ahmed M, Soliman M, Youssef M, Bahr R, Nofal A. Effect of niobium on the microstructure and mechanical properties of alloyed ductile irons and austempered ductile irons. Metals. 2021;11:703.
  • 14. Gazda A. Analysis of decomposition processes of ausferrite in copper-nickel austempered ductile iron. J Therm Anal Calorim. 2010;102:923-30.
  • 15. Hegde A, Sharma S, Vikas SR. Mechanical characterization and optimization of heat treatment parameters of manganese alloyed austempered ductile iron. J Mech Eng Sci. 2019;13(1):4356-67.
  • 16. Colin-Garcia E, Cruz-Ramirez A, Romero-Serrano JA. Nodule count effect on microstructure and mechanical properties of hypo-eutectic ADI alloyed with nickel. J Min Metall Sect B Metall. 2021;57:115-24.
  • 17. Bakhshinezhad H, Honarbakhshraouf A, Abdollah-Pour H. A study of effect of vanadium on microstructure and mechanical properties of as-cast and austempered ductile iron. Phys Met Metallogr. 2019;120:441-6.
  • 18. Haydarzadeh SM, Nili AA, Bahrami VA. The role of austempering parameters on the structure and mechanical properties of heavy section ADI. J Mater Process Technol. 2004;153:203-8
  • 19. Zhang H, Wu Y, Li Q, Hong X. Mechanical properties and rolling-sliding wear performance of dual phase austempered ductile iron as potential metro wheel material. Wear. 2018;406-407:156-65.
  • 20. Kim YJ, Shin H, Park H. Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature. Mat Lett. 2008;62(3):357-60.
  • 21. Hegde A, Sharma S, Shankar MC. Machinability and related properties of austempered ductile iron: a review. J Mech Eng Sci. 2018;12(4):4180-90.
  • 22. Gorny M, Angella G, Tyrała E, Kawalec M, Paź S, Kmita A. Role of austenitization temperature on structure homogeneity and transformation kinetics in austempered ductile iron. Met Mat Int. 2019;25(4):956-65.
  • 23. Taran YN, Uzlov KI, Kutsov AY. The bainite reaction kinetics in austempered ductile iron. J de Phys IV. 1997;7(5):429-34.
  • 24. Boccardo A, Dardati M, Celentano DJ, Godoy LA, Gorny M, Tyrała E. Numerical simulation of austempering heat treatment of a ductile cast Iron. Metall Trans B. 2016;47:566-75.
  • 25. Boccardoa AD, Dardatib PM, Godoya LA, Celentanod DJ. Sensitivity of austempering heat treatment of ductile irons to changes in process parameters. Metall Trans B. 2018;49:1522-36.
  • 26. Massone J, Boeri R, Sikora J. Changes in the structure and properties of ADI on exposure to high temperatures. Int J Cast Metal Res. 1996;9:79-82.
  • 27. Perez MJ, Cisneros MM, Valdes E. Experimental study of the thermal stability of austempered ductile irons. J Mater Eng Perform. 2002;11:519-26.
  • 28. Li X, Soria S, Gan W. Multi-scale phase analyses of strain-induced martensite in austempered ductile iron (ADI) using neutron diffraction and transmission techniques. J Mater Sci. 2021;56:5296-306.
  • 29. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993;192:55-69.
  • 30. Dantzig AJ, Rappaz M. Solidification. EPFL Press, 2016.
  • 31. Gorny M, Tyrała E, Sikora G, Rogal Ł. Identification of Mg2Cu particles in Cu-alloyed austempered ductile iron. Met Mater Int. 2018;24:95-100.
  • 32. Takahashi T, Abe T, Tada S. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel. Metall Mater Trans A. 1996;27A:1589-98.
  • 33. Darwish N, Elliott R. Austempering of low manganese ductile irons. Mater Sci Technol. 1993;9:572-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c5104bf-9345-4a60-aae7-72ab4337668f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.