PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of different sized multi walled carbon nanotubes on the barrier potential and trap concentration of malachite green dye based organic device

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present work shows effect of 8 nm diameter and 30 nm diameter multi walled carbon nanotubes (MWCNT) on the barrier potential and trap concentration of Malachite Green (MG) dye based organic device. MWCNTs are basically a bundle of concentric single-walled carbon nanotubes with different diameters. In this work, ITO coated glass substrate and aluminium have been used as front electrode and back electrode respectively and the spin coating method is used to prepare the MG dye based organic device. It has been observed that both barrier potential and trap concentration are in correlation. Estimation of both these parameters has been done from current-voltage characteristics of the device to estimate the trap energy and the barrier potential of the device. Device turn-on voltage or the transition voltage is also calculated by using current-voltage characteristics. In presence of 8 nm diameter MWCNT, the transition voltage is reduced from 3.9 V to 2.37 V, the barrier potential is lowered to 0.97 eV from 1.12 eV and the trap energy is lowered to 0.028 eV from 0.046 eV whereas incorporation of 30 nm diameter MWCNT shows reduction of transition voltage from 3.9 V to 2.71 V and a reduction of barrier potential and trap concentration from 1.12 eV to 1.03 eV and from 0.046 eV to 0.035 eV respectively. Presence of both 8 nm diameter and 30 nm diameter MWCNT lowers trap energy approximately to 39% and 24% respectively and lowers barrier potential approximately to 13% and 8% respectively. Estimation of barrier potential is also done by Norde method which shows lowering of the value from 0.88 eV to 0.79 eV and from 0.88 eV to 0.84 eV in presence of both 8 nm and 30 nm diameter multi walled carbon nanotubes respectively. Calculation of barrier potential from both the I-V characteristics and Norde method are in unison with each other. Indication of enhancement of charge flow in the device can be ascribed to the truncated values of barrier potential and trap energy.
Rocznik
Strony
16--26
Opis fizyczny
Bibliogr. 32 poz., rys. tab.
Twórcy
autor
  • Condensed Matter Physics Research Centre, Department of Physics, Jadavpur University, Kolkata-700032, India
autor
  • Condensed Matter Physics Research Centre, Department of Physics, Jadavpur University, Kolkata-700032, India
Bibliografia
  • 1. Liu Y- F., Feng J., Bi Y-G., Yin D., Sun H. B.: Recent Developments in Flexible Organic Light-Emitting Devices. Advanced Materials Technologies 4 (2019) 1800371-1 ̶ 1800371-19.
  • 2. Oehzelt M., Koch N., Heimel G.: Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nature Communications 5 (2014) 1-8.
  • 3. Haneef H. F., Zeidell A. M., Jurchescu O. D.: Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry C 8 (2020) 759-787.
  • 4. Bullejos P. L., Tejada J. A. J., Deen M. J., Marinov O., Datars W. R.: Unified model for the injection and transport of charge in organic diodes. Journal of Applied Physics 103 (2008) 064504-1 ̶ 064504-12.
  • 5. Armbrust N., Schiller F., Gűdde J., Höfer U.: Model potential for the description of metal/organic interface states. Scientific Reports 7 (2017) 1-8.
  • 6. Kumar S., Iyer S. S. K.: Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements. Journal of Applied Physics 121 (2017) 143104-1 ̶ 143104-6.
  • 7. Lian Z., Wei C., Gao B., Yang X., Chan Y., et al.: Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances 10 (2020) 9210-9225.
  • 8. Park J. G., Cheng Q., Lu J., Bao J., Li S., et al.: Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 50 (2012) 2083-2090.
  • 9. Kumanek B., Janas D.: Thermal conductivity of carbon nanotube networks: a review. Journal of Materials Science 54 (2019) 7397-7427.
  • 10. Yang M., Li X., Wang W., Zhang S., Han R.: Adsorption of methyl blue from solution by carboxylic multi-walled carbon nanotubes in batch mode. Desalination and Water Treatment 159 (2019) 365-376.
  • 11. Svensson J., Campbell E. E. B.: Schottky barriers in carbon nanotube-metal contacts. Journal of Applied Physics 110 (2011) 111101-1 ̶ 111101-16.
  • 12. Guo J., Liu Y.,1 Prada-Silvy R., Tan Y., Azad S., Krause B., Potschke P., Grady B. P.: Aspect Ratio Effects of Multi-walled Carbon Nanotubes on Electrical, Mechanical, and Thermal Properties of Polycarbonate/MWCNT Composites. Journal of Polymer Science Part B Polymer Physics 52 (2014) 73-83.
  • 13. Sze S.M., Ng K.K.: Physics of Semiconductor Devices. [3rd ed.], Wiley, New York, 2007.
  • 14. Kumatani A., Li Y., Darmawan P., Minari T., Tsukagoshi K.: On Practical Charge Injection at the Metal/Organic Semiconductor Interface. Scientific Reports 3 (2013) 1-6.
  • 15. Patel D. K., Kim H.B., Dutta S. D., Ganguly K., Lim K.T.: Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials 13 (2020) 1679.
  • 16. Ahmad M. A., Afandi N. S., Adegoke K. A., Bello O. S.: Optimization and batch studies on adsorption of malachite green dye using rambutan seed activated carbon. Desalination and Water Treatment 57 (2015) 21487-21511.
  • 17. Sen S., Manik N. B.: Effect of Carboxyl-Functionalized Single Walled Carbon Nanotubes on the Interfacial Barrier Height of Malachite Green Dye Based Organic Device. Physics International 10 (2019) 1-7.
  • 18. Sen S., Manik N. B.: Study on the Effect of 8 nm Size Multi Walled Carbon Nanotubes (MWCNT) on the Barrier Height of Malachite Green (MG) Dye Based Organic Device. International Journal of Advanced Science and Engineering 6 (2020) 23-27.
  • 19. Sen S., Manik N. B.: Effect of Zinc Oxide (ZnO) Nanoparticles on Interfacial Barrier Height and Band Bending of Phenosafranin (PSF) Dye-Based Organic Device. Journal of Electronic Materials 49 (2020) 4647-4652.
  • 20. Chiguvare Z., Parisi J., Dyakonov V.: Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. Journal of Applied Physics 94 (2003) 2440-2448.
  • 21. Harrabi Z., Jomni S., Beji L., Bouazizi A.: Distribution of barrier heights in Au/porous GaAs Schottky diodes from current–voltage–temperature measurements. Physica B 405 (2010) 3745-3750.
  • 22. Al-Ta’ii H. M. J., Amin Y. M., Periasamy V.: Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation. Sensors 15 (2015) 4810-4822.
  • 23. Sen S., Manik N. B.: Effect of Back Electrode on Trap Energy and Interfacial Barrier Height of Crystal Violet (CV) Dye based Organic Device. Bulletin of Materials Science 43 (2020) 1-4.
  • 24. Selçuk A. B., Ocak S. B., Kahraman G., Selçuk A. H.: Investigation of diode parameters using I–V and C–V characteristics of Al/maleic anhydride (MA)/p-Si structure. Bulletin of Materials Science 37 (2014) 1717-1724.
  • 25. Yildirim M.: Determination of Contact Parameters of Au/n-Ge Schottky Barrier Diode with Rubrene Interlayer. Journal of Polytechnic 20 (2017) 165-173.
  • 26. Zhang T., Raynaud C., Planson D.: Measure and analysis of 4H-SiC Schottky barrier height with Mo contacts. The European Physical Journal Applied Physics 85 (2019) 10102-1 ̶ 10102-9.
  • 27. Norde H.: A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics 50 (1979) 5052-5053.
  • 28. Yakuphanoglu F., Shah M., Farooq W. A.: Electrical and Interfacial Properties of p-Si/P3HT Organic-on-Inorganic Junction Barrier. Acta Physica Polonica A 120 (2011) 558-562.
  • 29. Kocyigit A., Yılmaz M., Aydogan Ș., Incekara Ü.: The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. Journal of Alloys and Compounds 790 (2019) 388-396.
  • 30. Türüt A.: Determination of barrier height temperature coefficient by Norde’s method in ideal Co/n-GaAs Schottky contacts. Turkish Journal of Physics 36 (2012) 235-244.
  • 31. Fukui K.: Theory of Orientation and Stereo Selection. Springer, Berlin, Heidelberg 1975.
  • 32. Haldar A., Maity S., Manik N. B.: Effect of back electrode on photovoltaic properties of crystal-violet-dye-doped solid-state thin film. Ionics 14 (2008) 427-432.
Uwagi
1. Financial support under Grant No.3482/ (NET-JULY2016) from UGC, India are gratefully acknowledged by Sudipta Sen.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c501165-b73a-4b23-928e-349822b9de1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.