PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimization of process parameters in turning of magnesium AZ91D alloy for better surface finish using genetic algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research examined at the optimum cutting parameters for producing minimum surface roughness and maximum Material Removal Rate (MRR) when turning magnesium alloy AZ91D. Cutting speed (m/min), feed (mm/rev), and cut depth (mm) have all been considered in the experimental study. To find the best cutting parameters, Taguchi's technique and Response Surface Methodology (RSM), an evolutionary optimization techniques Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were employed. GA gives better results of 34.04% lesser surface roughness and 15.2% higher MRR values when compared with Taguchi method. The most optimal values of surface roughness and MRR is received in multi objective optimization NSGA-II were 0.7341 µm and 9460 mm3/min for the cutting parameters cutting speed at 140.73m/min, feed rate at 0.06mm/min and 0.99mm depth of cut. Multi objective NSGA-II optimization provides several non-dominated points on Pareto Front model that can be utilized as decision making for choice among objectives.
Twórcy
  • Department of Mechanical Engineering, Sona College of Technology Salem, India
  • Department of Mechatronics Engineering, Kumaraguru College of Technology Coimbatore, India
  • Department of Mechanical Engineering, Sona College of Technology Salem, India
Bibliografia
  • [1] G. Li, L. Zhou, J. Zhang, S. Luo, N. Guo, Macrostructure, microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints, J. Mater. Res. Technol. 9 (2020) 9348–9361. https://doi.org/10.1016/j.jmrt.2020.05.067.
  • [2] S.-J. Huang, M. Subramani, C.-C. Chiang, Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method, Compos. Commun. 25 (2021) 100772. https://doi.org/10.1016/j.coco.2021.100772.
  • [3] M. Pradeepkumar, R. Venkatesan, V. Kaviarasan, Evaluation of the surface integrity in the milling of a magnesium alloy using an artificial neural network and a genetic algorithm, Mater. Tehnol. 52 (2018) 367–373. https://doi.org/10.17222/mit.2017.198.
  • [4] N.E. Karkalos, N.I. Galanis, A.P. Markopoulos, Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques, Meas. J. Int. Meas. Confed. 90 (2016) 25–35. https://doi.org/10.1016/j.measurement.2016.04.039.
  • [5] I. Zagórski, J. Korpysa, Surface quality assessment after milling AZ91D magnesium alloy using PCD tool, Materials (Basel). 13 (2020) 617. https://doi.org/10.3390/ma13030617.
  • [6] A. Fadavi Boostani, S. Tahamtan, Z.Y. Jiang, D. Wei, S. Yazdani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, J. Xu, X. Zhang, D. Gong, Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles, Compos. Part A Appl. Sci. Manuf. 68 (2015) 155–163. https://doi.org/10.1016/j.compositesa.2014.10.010.
  • [7] Y. Su, G. Zhao, Y. Zhao, J. Meng, C. Li, Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel, Metals (Basel). 10 (2020) 217. https://doi.org/10.3390/met10020217.
  • [8] V. Kavimani, K.S. Prakash, T. Thankachan, Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics, Compos. Part B Eng. 167 (2019) 621–630. https://doi.org/10.1016/j.compositesb.2019.03.031.
  • [9] M. Kuntoğlu, A. Aslan, D.Y. Pimenov, K. Giasin, T. Mikolajczyk, S. Sharma, Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response Surface methodology in turning of AISI 5140 steel, Materials (Basel). 13 (2020) 4242. https://doi.org/10.3390/MA13194242.
  • [10] N. Radhika, P. Shivaram, K.T. Vijay Karthik, Multi-objective optimization in electric discharge machining of aluminium composite, Tribol. Ind. 36 (2014) 428–436.
  • [11] S.N. Bhavsar, S. Aravindan, P.V. Rao, Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide, Precis. Eng. 40 (2015) 131–138. https://doi.org/10.1016/j.precisioneng.2014.10.014.
  • [12] M. Aamir, S. Tu, M. Tolouei-Rad, K. Giasin, A. Vafadar, Optimization and modeling of process parameters in multi-hole simultaneous drilling using taguchi method and fuzzy logic approach, Materials (Basel). 13 (2020) 680. https://doi.org/10.3390/ma13030680.
  • [13] S.P. Gairola, Y. Tyagi, B. Gangil, K. Jha, Physio-mechanical & wear performance of banana fiber/walnut powder based epoxy composites, Acta Innov. (2021) 42–55. https://doi.org/10.32933/ActaInnovations.41.4.
  • [14] A. Ahmad, M.A. Lajis, N.K. Yusuf, S.N. Ab Rahim, Statistical optimization by the response Surface methodology of direct recycled aluminum-alumina metal matrix composite (MMC-AlR) employing the metal forming process, Processes. 8 (2020) 805. https://doi.org/10.3390/pr8070805.
  • [15] K.M. Hamdia, X. Zhuang, T. Rabczuk, An efficient optimization approach for designing machine learning models based on genetic algorithm, Neural Comput. Appl. 33 (2021) 1923–1933. https://doi.org/10.1007/s00521-020-05035-x.
  • [16] M.J. Mayer, A. Szilágyi, G. Gróf, Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm, Appl. Energy. 269 (2020) 115058. https://doi.org/10.1016/j.apenergy.2020.115058.
  • [17] F. Rosso, V. Ciancio, J. Dell’Olmo, F. Salata, Multi-objective optimization of building retrofit in the Mediterranean climate by means of genetic algorithm application, Energy Build. 216 (2020) 109945. https://doi.org/10.1016/j.enbuild.2020.109945.
  • [18] K. Deb, J. Blank, Evolutionary multi- And many-objective optimization: Methodologies, applications and demonstration, in: GECCO 2021 Companion - Proc. 2021 Genet. Evol. Comput. Conf. Companion, ACM, New York, NY, USA, 2021: pp. 740–769. https://doi.org/10.1145/3449726.3461399.
  • [19] K. Deb, P.C. Roy, R. Hussein, Surrogate Modeling Approaches for Multiobjective Optimization: Methods, Taxonomy, and Results, Math. Comput. Appl. 26 (2020) 5. https://doi.org/10.3390/mca26010005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c492d27-ff2f-4c27-b6e8-2c103a6d42b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.