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Highlight 
Optimization of machining parameters using genetic algorithm. 
 
Abstract  
This research examined at the optimum cutting parameters for producing minimum surface roughness 
and maximum Material Removal Rate (MRR) when turning magnesium alloy AZ91D. Cutting speed (m/min), feed 
(mm/rev), and cut depth (mm) have all been considered in the experimental study. To find the best cutting 
parameters, Taguchi's technique and Response Surface Methodology (RSM), an evolutionary optimization 
techniques Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were employed. 
GA gives better results of 34.04% lesser surface roughness and 15.2% higher MRR values when compared with 
Taguchi method. The most optimal values of surface roughness and MRR is received in multi objective 
optimization NSGA-II were 0.7341 µm and 9460 mm3/min for the cutting parameters cutting speed 
at 140.73m/min, feed rate at 0.06mm/min and 0.99mm depth of cut. Multi objective NSGA-II optimization 
provides several non-dominated points on Pareto Front model that can be utilized as decision making for choice 
among objectives. 
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Introduction 
Magnesium alloys are advanced and lighter materials used extensively in industries like automobile, aerospace, 
engine block casing etc. They possess excellent strength to weight ratio which is a significant factor in modern 
industrial products [1]. In machining of magnesium alloy surface roughness and MRR have become significant 
factors in terms of quality and economy characteristics. As a result, experimental methods must be used 
to optimize machining parameters for newer materials [2]. Numerous optimization techniques which include 
Fuzzy Logic, Taguchi optimization, Ant colony optimization, and simulated annealing gives solutions for various 
optimization problems. Noticeably, genetic algorithm optimization is a modern method and it additionally 
determined to be better in arriving at optimized solution for complicated real worldwide problems [3,4]. Many 
academics and businesses are currently interested in improving manufacturing strategies in order to save costs, 
improve quality [5], and gain from increased efficiency. 
 
Boostani et al. [6] have investigated AISI 304 austenitic stainless steel in order to improve cutting quality 
and productivity while lowering power consumption. Surface roughness was assessed in a short period of time 
using a surface roughness tester; this could be influenced by machine vibration, tool and material type, 
and coolant supply. Cutting parameter optimization focuses primarily on cutting force, surface quality, 
and processing cost, according to Su's study [7]. It also claims that the impact of cutting parameters on energy 
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consumption is neglected in the multi-objective cutting operation of cutting parameters using the RSM approach. 
Kavimani et al. [8] have investigated the influence of machining parameters on wire electrical discharge 
machining performance in magnesium composite, they have reported that the MRR and surface roughness 
are significant towards parameter involvement. Kuntolu et al. [9] investigated the modelling of cutting 
parameters and tool geometry for multi-criteria optimization of surface roughness and vibration using response 
surface methodology. They found that feed rate is the most important contributing factor to surface roughness, 
and that the interaction of cutting speed and tool coating has a minor impact. 
 
Lamentably, in multi variable trouble characteristic most computational techniques for complicated machining 
systems require significant computational resources to assess each parameter. No method presently 
consequences inside the same levels of efficiency for all process. The prevailing work interests to apply 
the surface roughness values and MRR as multi objective capabilities, as an efficient approach for identifying 
the exceptional parameters for traits, via GA and NSGA-II. GA is a technique seeking out optimum combinations 
and solutions over the traditional optimization strategies. The stairs usually followed in GA are reproduction, 
crossover and mutation. There are various algorithms and techniques of solving multi-objective optimization 
hassle exist [10]. Therefore, multi-objective optimization is pondered as a utility of single-objective optimization 
for conduct a couple of goals. NSGA gives the higher maximum extraordinary solution for each objective function 
in terms of solutions [11]. NSGA-II based multi-objective optimization for MRR, and Surface roughness has been 
completed on this machining for magnesium alloy. Multi objective optimization GA (MOGA) toolbox of MATLAB 
has been utilized in this paper. 
 
Materials and methods 
Taguchi approach and RSM 
The design of experiments has been taken using Taguchi methodology, it is an effective method in producing 
robust design. It provides a simple and methodical qualitative optimum design at a minimal cost. It has 
a collection of orthogonal arrays which can be used to study into the effectiveness of different process 
parameters. Genechi proposed the signal-to-noise (S/N) ratio, which took both means and variability into 
account and the influence of process characteristics on the performance measure is indicated by S/N ratios 
in ANOVA [12,13]. 
In Taguchi approach three levels of performance characteristics are followed in the analysis of S/N ratio that 
is “Smaller the better”, “Larger the Better” and “Nominal the Better”. Based on the criteria, different S/N ratios 
can be selected. The main objective of the analysis of variance is to evaluate the cutting parameters 
that significantly affect surface quality characteristics. Effective parameter is determined by F-test value and 
compared with standard F- table value. RSM [14] is a statistical method for modeling and analysis, which deals 
different variables and responses. RSM is used to develop a model for suitable approximation for relationship 
between the response variables and independent variables as followed by Equation (1). 
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GA approach- Single objective optimization 
GA is an evolutionary optimization approach for solving problems involving the application of evolutionary 
biology principles [15]. Genetic inheritance, natural selection, mutation, and crossover are all biologically inspired 
approaches used by GAs. GAs are used to model the process of biological evolution and Darwin's hypothesis 
of survival of the fittest. A set of ability solutions or chromosomes within the character of bit strings 
that are randomly picked are used to solve an optimization with GA. A population is made up of the full set 
of these chromosomes. The chromosomes evolve for the duration of numerous iterations or generations. 
New generations (offspring) are generated making use of the crossover and mutation method. Crossover 
is the process of separating two chromosomes and then combining one-half of each pair with the other. A single 
chromosomal bit is spun during a mutation. The chromosomes are then assessed against a set of fitness 
requirements, with the best ones being kept and the rest being destroyed. This approach is repeated until one 
chromosome exhibits high-quality fitness and is deemed the best answer to the challenge [16,17]. 
 
Multi-Objective Optimization with NSGA-II 
The Non-dominated Sorting GA (NSGA) became proposed through Srinivas and Deb [18], and is based on several 
layers of classifications of the individuals and it is prominent algorithm for multi-objective optimization. Before 
selection is carried out, the population is ranked on the premise of domination the usage of Pareto the front. 
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NSGA become developed for this study to reap optimum cutting parameters in terms of population, cross over, 
mutation and crowding distance parameters applied [19]. Figure 1 depicts the flow chart for the implementation 
of the NSGA-II algorithm. 
 

 

Figure 1. NSGA-II Process Flow Chart. 

 

Experimental Design 
The chemical composition of Magnesium AZ91D alloy is shown in Table 1 and the turning experiment was carried 
out in size of 50 mm diameter and 70 mm length workpiece. In this turning operation CVD coated carbide tool 
insert of triangular shape was used and the standard code of cutting tool TNMG 16 04 08 was chosen. The CNC 
turn master was chosen for cutting operation. Cutting parameters Cutting Speed v (m/min), Feed rate f (mm/rev) 
and depth of cut d (mm) were considered in this machining process and its levels are presented in Table 2. 
The machining of magnesium alloy was carried out in dry condition. The surface roughness measurement 
was conducted with Mitutyo Surftest 211. The turning experiment was carried out in 50 mm diameter and 70 
mm length of 5 work pieces and shown in Figure 2. The roughness values were taken on the work piece 
circumference in three different places and the average value is presented in Table 3. The MRR (Q) 
is an important parameter in industrial economy and quality factor. In this work the MRR calculated by using 
standard Equation 2. MRR is calculated in each level of machining process and the data are presented in Table 3. 
 

(2)   Q = v X f X d (mm3/min)   
 

 

 

Table 1. Chemical Composition of Magnesium AZ91D Alloy. 
 

 Element    Al Mn Zn Si Fe Cu Ni Mg 

 Weight %    8 7-10.5 0.15-0.4 0.35-1.0 0.3  0.05 0.15 0.01 Balance 
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Table 2. Cutting parameters and their levels. 
 

Factor Unit Level-1 
(Low) 

Level-2 
(Medium) 

Level-3 
(High) 
 

v m/min 80 110 150 

f mm/rev 0.05 0.10 0.15 

d mm 0.5 0.75 1.0 

 

The Taguchi orthogonal array L27 was chosen for machining experiments. The signal to noise ratios for surface 
roughness Ra and MRR obtained using Taguchi's approach are shown in Table 3. A lower surface roughness value 
is usually desirable in metal cutting. The S/N ratio was determined using the smaller-is-better methodology 
for the aforementioned responses. Regardless of the category of performance criteria, the higher the S/N ratio, 
the better the performance. The highest value of the S/N ratio indicates the optimum value for each level 
of process parameter. 
 

 

Figure 2. Machined Work pieces. 

 
Results and Discussion 
Taguchi approach- Main effect analysis 
To investigate the effects of cutting parameters on surface roughness and MRR, Minitab® is used to construct 
a primary effect plot for various S/N ratios. The main effect graph shows a visualization of the main response 
values of the S/N ratio at each level of factor. Cutting speed has an impact on surface roughness, as shown 
in Figure 3. Increasing cutting speed reduces surface roughness in level 2 and then increases. The most essential 
factor is the feed rate; as the feed rate increases, the surface roughness increases to level 2, and then decreases 
as the depth of cut increases. 
Figure 4 depicts the effects of factors on MRR values. It indicates that MRR increases as cutting speed, feed rate, 
and depth of cut increase. Taguchi methodology implies optimum cutting parameters of 110m/min cutting speed 
(level 2), 0.05mm/rev feed rate (level 1), 1mm depth of cut (level 3) to attain minimum surface roughness 
of 0.63µm and 150m/min cutting speed (level 3), 0.15mm feed rate (level 3), 1mm depth of cut (level 3) to reach 
maximum MRR of 19550 mm3/min and shown in Table 4. 
 

 

Figure 3. Main effect plot for surface roughness. 
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Figure 4. Main Effect Plot for MRR. 

 
Table 3. Experimental Data with S/N ratio. 

 

Trail 
No 

Cutting 
Speed 
(m/min) v 

Feed Rate 
(mm/rev) 
f 

Depth of 
Cut (mm) 
d 

Ra 
(µm) 
Ra 

MRR 
(mm3/min) 
Q 

Surface 
roughness 
S/N Ratio 
 

MRR 
S/N Ratio 

1 80 0.05 0.5 0.45 1963 6.93575 65.85619 

2 80 0.05 0.75 0.88 2944 1.110347 69.37802 

3 80 0.05 1 0.64 3925 3.876401 71.87679 

4 80 0.1 0.5 0.86 3925 1.310031 71.87679 

5 80 0.1 0.75 1.25 5888 -1.9382 75.39862 

6 80 0.1 1 0.79 7850 2.047458 77.89739 

7 80 0.15 0.5 1.45 5888 -3.22736 75.39862 

8 80 0.15 0.75 1.48 8831 -3.40523 78.92044 

9 80 0.15 1 1.12 11775 -0.98436 81.41922 

10 115 0.05 0.5 0.57 2944 4.882503 69.37802 

11 115 0.05 0.75 0.67 4416 3.478504 72.89984 

12 115 0.05 1 0.62 5888 4.152166 75.39862 

13 115 0.1 0.5 0.85 5888 1.411621 75.39862 

14 115 0.1 0.75 1.23 8831 -1.7981 78.92044 

15 115 0.1 1 0.82 11775 1.723723 81.41922 

16 115 0.15 0.5 1.35 8831 -2.60668 78.92044 

17 115 0.15 0.75 1.40 13247 -2.92256 82.44227 

18 115 0.15 1 0.99 17663 0.087296 84.94104 

19 150 0.05 0.5 0.63 3925 4.013189 71.87679 

20 150 0.05 0.75 0.77 5888 2.270185 75.39862 

21 150 0.05 1 0.70 7850 3.098039 77.89739 

22 150 0.1 0.5 0.81 7850 1.8303 77.89739 

23 150 0.1 0.75 1.17 11775 -1.36372 81.41922 

24 150 0.1 1 1.06 15700 -0.50612 83.91799 

25 150 0.15 0.5 1.42 11775 -3.04577 81.41922 

26 150 0.15 0.75 1.37 17663 -2.73441 84.94104 

27 150 0.15 1 0.99 19550 0.087296 87.43982 
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Table 4. Response table for data means 
 

Level Surface Roughness (Ra) MRR(Q) 
 

v f d v f d 

1 0.9911 0.6589 0.9322 5888 4416 5888 

2 0.9444 0.9822 1.1356 8831 8831 8831 

3 0.9911 1.2856 0.8589 11775 13247 11775 

Rank 3 1 2 2.5 1 2.5 

 
ANOVA and RSM 
The findings of the analysis of variance for surface roughness and MRR are shown in Tables 5 and 6 respectively. 
Surface roughness and MRR are both influenced by the feed rate than by cutting depth and cutting speed. RSM 
is used to develop the correlation between cutting parameters and responses in terms of second order 
equations. The Equations (3) and (4) are the quadratic response surface model impacting surface roughness 
and MRR with turning factors v, f, and d.  
 

Table 5. ANOVA for Surface Roughness 
 

Source DF SS MS F 
 

v 2 0.01307 0.00653 0.38 

f 2 1.76780 0.88390 51.45 

d 2 0.36980 0.18490 10.76 

Error 20 0.34360 0.01718  

Total 2 2.49427   
 

Table 6. ANOVA for MRR 
 

Source DF SS MS F 
 

v 2 155981953 77990977 23.82 

f 2 350959395 175479697 53.60 

d 2 155981953 77990977 23.82 

Error 20 65473906 3273695  

Total 2 728397207   

 

(3) 

 

Ra=-1.95365-0.00757143×v+16.4071×f+6.45714×d+0.000038095×v2-4×f2-
3.84000×d2 0.0190476×v×f+0.000952381×v×d-9.53333×f×d   

 

 

(4) Q=9672.32-84.10×v-96723×f-
12896×d+841.071×v×f+112.143×v×d+117750×f×d   

 

 
Single objective genetic algorithm 
50 population size, 1 crossover rate, 0.1 uniform distribution mutation rate, bit number 16 for each variable, 
and 1500 iterations were used in this investigation. For single objective optimization, the optimal cutting 
parameters for surface roughness and MRR were calculated using RSM Equations (3) and (4). Cutting speeds 
of 80 to 200 m/min, feed rates of 0.05 to 0.2 mm, and depth cuts of 0.5 to 2 mm were used for the optimization 
study. The optimal value of cutting parameters resulted in the minimizing of surface roughness and maximum 
MRR through GA optimization as shown in Figure 5. From this optimization the results for surface roughness and 
MRR are shown in Table 7. Single objective optimization study carried out separately on surface roughness and 
MRR yields optimal parameter values as 0.4789(µm) and 23059 (mm3/min) respectively. For optimizing both 
objective, multi-objective optimization technique is preferable.
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. 

 

Figure 5. GA Single objective approach. 

 
 

Table 7. Optimized cutting parameter in single objective GA algorithm. 
 

Response v (m/min) f (mm/min) d (mm) Optimized 
Value 
 

Ra  127 0.05 0.5 0.4789(µm) 

MRR  148 0.15 1 23059 (mm3/min) 

 

Non-dominated Sorting Genetic Algorithm-II 
In this multi objective optimization study, population size of 50, crossover rate of 1.0, and 0.1 mutation rate were 
utilized for 2500 iterations. Solve XL and MATLAB mathematical software’s are used in this research to intensify 
NSGA-II and Pareto front analysis and the most efficient cutting parameters has been selected to attain minimal 
surface roughness with maximum metal removal rate. Figure 6 represents Pareto Front analysis, which indicate 
that while increase of MRR tends to increase the surface roughness of material. In graph, curve A to B shows 
lesser values of MRR with the increase of surface roughness when compared with curve C to D. MRR value 
achieved at points B and D are 8000 mm3/min and 23000 mm3/min respectively. Through NSGA-II optimal values 
of surface roughness and MRR are attained between point B and C as shown in Table 8. The most optimal value 
achieved in curve B to C is 0.7341 µm surface roughness and 9460 mm3/min MRR for the cutting parameters 
of 140.73m/min cutting speed, 0.06 mm/min feed rate and 0.99 mm depth of cut. 

 

 

Figure 6. Pareto Front Model. 
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Table 8. B to C Region Values in Pareto Front Model 
 

S. No v f d Ra Q 
 

1 119.12 0.0625 0.99976 0.68822 7691.3957 

2 136.29 0.0565 0.99988 0.69830 8267.28214 

3 131.30 0.0628 1 0.71002 8713.91085 

4 147.24 0.0548 0.99878 0.72770 8829.47595 

5 140.74 0.0627 0.99976 0.73410 9460.58057 

6 136.05 0.0689 0.99976 0.74446 9916.49345 

7 143.90 0.0689 0.99976 0.76593 10591.1772 

8 143.90 0.0693 1 0.76690 10649.4953 

9 146.28 0.0712 1 0.78121 11136.4851 

10 136.05 0.0814 1 0.79010 11613.8588 

11 141.64 0.0814 1 0.80357 12153.2902 

 
Impact 
Furthermore, the GA technique suggested the optimal combination of parameters to achieve an improved 
surface finish and MRR. Therefore, this experimental study proved, based on the aforementioned observations, 
that the proposed methodologies can determine the optimum machining parameters which would be 
significantly beneficial in the manufacturing industries. 
 
Conclusion 
The cutting parameters in the turning of the magnesium alloy AZ91D were optimized using evolutionary 
techniques in this experiment. Through single and multi-objective GA, the RSM quadratic model has been 
constructed to forecast and evaluate mathematical solutions for achieving optimal cutting parameters. 
The following conclusions were derived using an evolutionary approach. 

 Taguchi methodology implies optimum cutting parameters of 110m/min cutting speed, 0.05mm/rev 
feed rate, 1mm depth of cut to attain minimum surface roughness of 0.63µm and 150m/min cutting 
speed, 0.15mm feed rate, 1mm depth of cut to reach maximum MRR of 19550 mm3/min. 

 The minimum surface roughness attained was 0.4789m by optimized cutting parameters of 127m/min 
cutting speed, 0.05mm/rev feed rate, 0.5mm depth of cut, and the maximum MRR of 23059 mm3/min 
was attained by optimized cutting parameters of 148m/min cutting speed, 0.15mm feed rate, and 1mm 
depth of cut with a single objective GA approach. 

 GA yields better results of about 34.04% lesser surface roughness and 15.2% higher MRR values when 
compared with Taguchi method. 

 The most optimal values achieved in multi objective optimization NSGA-II are 0.7341 µm surface 
roughness and 9460 mm3/min MRR for the cutting parameters of 140.73 m/min cutting speed 0.06 
mm/min feed rate and 0.99 mm depth of cut. 

 Multi objective NSGA-II optimization provides several non-dominated points on Pareto Front model that 
can be utilized as decision making for choice among different objectives. 
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