PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An EEG mobile device as a game controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the real-time control of computer games was explored by a single elec-trode mobile electroencephalography (EEG) device with a Bluetooth interface. The amplitudevariation in the two frequency bands of 4-12 Hz and 60-200 Hz was selected as the real-timecontrol parameter. The frequency-domain of a raw EEG signal was calculated using the discreteFourier transform. The time-dependent signal samples equal to 512, 1024, and 2048 time pointsin size were used in our research. The well-known classic Pong game was used to try out ourcontroller. The developed software handles communication with the device and real-time gamerendering. The .NET Framework with the C# programming language was used as a develop-ment tool. 50 gameplay trials were made for each controller setup. The obtained results arepromising for the possible use of the device in real-time communication with computer devicesfor people with hand disabilities.
Rocznik
Strony
397--407
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Transport and Computer Science, WSB University, Cieplaka 1c, 41-300 Dąbrowa Górnicza, Poland
  • Department of Transport and Computer Science, WSB University, Cieplaka 1c, 41-300 Dąbrowa Górnicza, Poland
Bibliografia
  • [1] Berger H 1929 Über das Elektrenkephalogramm des Menschen, Arch. Für Psychiatr. Nervenkrankh 87 527-570 doi: https://doi.org/10.1007/BF01797193
  • [2] Vidal J J 1977 Real-time detection of brain events in EEG, Proc. IEEE. 65 633–641 doi: https://doi.org/10.1109/PROC.1977.10542
  • [3] Liu N H, Chiang C Y and Chu H C 2013 Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors, Sensors 13 10273–10286 doi: https://doi.org/10.3390/s130810273
  • [4] Durka P J, Kuś R, Żygierewicz J, Michalska M, Milanowski P, Łabęcki M, Spustek T, Laszuk D, Duszyk A and Kruszyński M 2012 User-centered design of brain-computer interfaces: OpenBCI.pl and BCI Appliance, Bull. Pol. Acad. Sci. Tech. Sci. 60 427–431 doi: https://doi.org/10.2478/v10175-012-0054-1
  • [5] Mohammadi G, Shoushtari P, Molaee Ardekani B and Shamsollahi M B 2006 Person Identification by Using AR Model for EEG Signals, Proceeding World Acad. Sci. Eng. Technol. 11 281–285
  • [6] Poulos M, Rangoussi M, Alexandris N and Evangelou A 2002 Person identification from the EEG using nonlinear signal classification, Methods Inf. Med. 41 64–75
  • [7] Dawid A 2019 PSR-based research of feature extraction from one-second EEG signals: a neural network study, SN Appl. Sci. 1 1536, doi: https://doi.org/10.1007/s42452-019-1579-9
  • [8] Alakus T B, Gonen M and Turkoglu I Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO, Biomed. Signal Process. Control. 60 101951 doi: https://doi.org/10.1016/j.bspc.2020.101951
  • [9] Parafita R, Pires G, Nunes U and Castelo-Branco M 2013 A spacecraft game controlled with a brain-computer interface using SSVEP with phase tagging, IEEE 2nd Int. Conf. Serious Games Appl. Health SeGAH 1-6 doi: https://doi.org/10.1109/SeGAH.2013.6665309
  • [10] Martinez P, Bakardjian H and Cichocki A 2007 Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm, Comput. Intell. Neurosci. e94561 doi: https://doi.org/10.1155/2007/94561
  • [11] Chumerin N, Manyakov N V, van Vliet M, Robben A, Combaz A and Hulle M M V 2013 Steady-State Visual Evoked Potential-Based Computer Gaming on a Consumer-Grade EEG Device, IEEE Trans. Comput. Intell. AI Games 5 100–110 doi: https://doi.org/10.1109/ TCIAIG.2012.2225623
  • [12] van Vliet M, Robben A, Chumerin N, Manyakov N V, Combaz A and Hulle M MV 2012 Designing a brain-computer interface controlled video-game using consumer grade EEG hardware, ISSNIP Biosignals Biorobotics Conf. Biosignals Robot. Better Safer Living BRC 1–6 doi: https://doi.org/10.1109/BRC.2012.6222186
  • [13] Finke A, Lenhardt A and Ritter H 2009 The MindGame: A P300-based brain–computer interface game, Neural Netw. 22 1329–1333 doi: https://doi.org/10.1016/j.neunet.2009.07.003
  • [14] Cabañero L, Hervás R, González I, Fontecha J, Mondéjar T and Bravo J 2020 Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing, Future Gener. Comput. Syst. 113 380–390 doi: https://doi.org/10.1016/j.future.2020.07.013
  • [15] Pong Game, (n.d.) (accessed December 24, 2020) doi: https://www.ponggame.org/
  • [16] Rostański M, Buchwald P, Mączka K, Kostka P and Nawrat Z 2015 The development of internetwork channel emulation platform for surgical robot telemanipulation control system (INSeRT), Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 1081–1085 doi: https://doi.org/10.15439/2015F239
  • [17] NeuroSky, EEG Sensors - EEG Headsets | NeuroSky, (n.d.) (accessed September 7, 2018) doi: http://neurosky.com/biosensors/eeg-sensor/biosensors/
  • [18] Oostenveld R and Praamstra P 2001 The five percent electrode system for high-resolution EEG and ERP measurements, Clin. Neurophysiol. 112 713–719 doi: https://doi.org/10.1016/S1388-2457(00)00527-7
  • [19] Duhamel P 1990 Algorithms meeting the lower bounds on the multiplicative complexity of length-2/sup n/ DFTs and their connection with practical algorithms, IEEE Trans. Acoust. Speech Signal Process. 38 1504–1511 doi: https://doi.org/10.1109/29.60070
  • [20] Jain A, Bansal R, Kumar A and Singh K 2015 A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students, Int. J. Appl. Basic Med. Res. 5 124–127 doi: https://doi.org/10.4103/2229-516X.157168
  • [21] Thompson P D, Colebatch J G, Brown P, Rothwell J C, Day B L, Obeso J A and Marsden C D 1992 Voluntary stimulus-sensitive jerks and jumps mimicking myoclonus or pathological startle syndromes, Mov. Disord. Off. J. Mov. Disord. Soc. 7 257–262 doi: https://doi.org/10.1002/mds.870070312
  • [22] Math.NET Numerics, (n.d.) (accessed December 27, 2020) doi: https://numerics.mathdotnet.com/
  • [23] Cattani C and Rushchitsky J 2007 Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure, WORLD SCIENTIFIC doi: https://doi.org/10.1142/6497
  • [24] Pang T 2006, An Introduction to Computational Physics 2 edition, Cambridge University Press, Cambridge; New York
  • [25] Atkinson K 1989, An Introduction to Numerical Analysis, 2nd edition, Wiley, New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c47b6a3-2ed5-4ade-a719-135d2fdf1a0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.