PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the optical properties of blood using He-Ne laser and double integrating sphere set-up

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The behaviour of light interaction with biological tissue is determined by micro-optical parameters: refractive index (n), absorption coefficient (µa), scattering coefficient (µs), and anisotropy (g). The goal of this study is to measure the optical properties of normal whole blood using He-Ne laser (wavelength 632.8 nm). The refractive index is measured using the traveller microscope. The integrating sphere method is used to measure the macro-optical parameters: total diffusive reflectance, transmittance, and collimated transmittance at wavelength 632.8 nm. The macro-optical parameters are fed to Inverse Adding Doubling (IAD) theoretical technique, to estimate the micro-optical parameters (µs, µa, g). An alternative practical method is used to measure the g value based on utilising the goniometric table. The study reveals that the refractive index (n) equals 1.395±0.0547, absorption coefficient (µa) equals 2.37 mm−1, scattering coefficient (µs) equals 55.69 mm−1, and anisotropy (g) equals 0.82. In conclusion, these findings approved, in general, the applicability of the suggested experimental set up. The set up depend on using three devices: the integrating sphere method to estimate (µs, µa, g), traveller microscope (n) and goniometer (g).
Rocznik
Strony
1--5
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • University of Bahrain, Colleges of Science, Department of Physics, Sakheer, P.O.Box:3203, Kingdom of Bahrain
  • University of Bahrain, Colleges of Science, Department of Physics, Sakheer, P.O.Box:3203, Kingdom of Bahrain
Bibliografia
  • [1] Boulpaep E, Boron F (eds). Medical physiology. 2nd ed. Saunders and Philadephia, PA: Saunders/Elsevier. 2009.
  • [2] van der Pol E, Boing AN, Harrison P, et al. Classification, functions and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676-705.
  • [3] Kolesnicova IV, Potapov SV, Yurkin MA, et al. Determination of volume, shape and refractive index of individual blood platelets. J Quant Spectrosc Radiat Transf. 2006;102(1):37-45.
  • [4] Cheoung WF, Welch A, Prahl S. A Review of the Optical Properties of Biological Tissues. IEEE J Quantum Electron. 1990;26:2166-2184.
  • [5] Kubelka P. New contribution to the optics intensly light-scattering materials. J Optical Soc Amer. 1948;38(5):448-457.
  • [6] Sardar D, Levy L. Optical properties of whole blood. Lasers Med Sci. 1998;13(2):106-111.
  • [7] van Gemert MJ, Verdaasdounk P, Stassen E, et al. Optical properties of human blood vessel wall and plague. Lasers Surg Med. 1985;5(3):235-237.
  • [8] Wan S, Anderson RR, Parish JA. Analytical modeling forth optical properties of the skin with within verto and vivo applications. Photochem Photobiol. 1981;34(4):493-449.
  • [9] Hammer M, Roggan A, Schweitzer D, Muller G. Optical properties of ocular fundus tissues-an in verto study using the doubleintegrating-sphere technique and inverse Monte Carlo simulation. Phys Med Biol. 1995;40(6):963-978.
  • [10] Ishimaru A. Wave Propagation and Scattering in Random Media: Vol I. New York: Academic Press; 1978.
  • [11] Reynolds L, Johnson J, Ishimaru A. Diffuse reflectance from finite blood medium: application to the modeling of fiber optic catheters. Appl Opt. 1978;15(9):2059-2067.
  • [12] Groenhuis RG, Ferwerda HA, Ten Bosch JJ. Scattering absorption of turbid materials determine from reflection measurements. Appl Opt. 1983;22(1):2456-2467.
  • [13] Prahl SA, van Gemert MJC, Welch AJ. Determining the optical properties of turbid mediably using the adding-doubling method. Appl Opt. 1993;32(4):559-568.
  • [14] Hourdakis CJ, Perris A. Monte Carlo estimation of tissue optical properties for use in laser dosimetry. Phys Med Biol. 1995;40(3):351-364.
  • [15] Jacques S, Wang L. A Monte Carlo modeling for light transpose in tissues. in: Welch AJ, van Gemert MJC (eds.). Optical-thermal response of laser-irradiated tissue. 1995.
  • [16] Bosschaart N, Edelman G, Aalders M, et al. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. 2014;29(2):453-479.
  • [17] Prahl S. Light transport in tissue: Univ Texas at Austin; 1988. Ph.D. dissertation.
  • [18] Grange BW, Stevenson WH, Viskanta R. Reflective index of liquid solutions at low temperature: an accurate measurement. Appl Opt. 1976;15(4):858-859.
  • [19] Steinke JM, Shepherd AP. Diffusion model of the optical absorbance of whole blood. Opt Soc Am A. 1988;5(6):813-822.
  • [20] Steinke J, Shepherd AP. Comparison with Mie theory and the light scattering of red blood cells. Appl Opt. 1988;27(19):4027-4033.
  • [21] Jacques S. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(14):5007-5008.
  • [22] Prahl S. Optical Absorption of Hemoglobin. Available at: http://omlc.ogi.edu/spectra/hemoglobin.
  • [23] Feng S, Liu L, Chen R, et al. Scattering and Absorbing Characteristics of Human Whole Blood in K-M Model at He-Ne Laser in Virto. J Fujian Normal Univ (Natural Science). 2003;19(4):46-94.
  • [24] Yaroslavsky A, Yaroslavsky I, Goldbach T, Schwarzmaier IJ. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements. J Biomed Opt. 1999;4(1):47-53.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c46dea4-c696-4284-997e-3f10c68d6f70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.