PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Adsorption Properties of a New Biopolymer Created Using Brown Algae Powder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to create a new material utilizing a biopolymer (sodium alginate) and the powder of brown algae for the elimination of organic pollutants like dyes by adsorption from a water-based solution. The alginate/algae composite beads used in this study as an adsorbent were created by inotropic gelation of sodium alginate utilizing calcium ions as a cross-linking agent. The beads thus synthetized had been characterized by using different techniques in order to assess their characteristics. The adsorption procedure was studied in a batch mode at room temperature using methyl violet, a cationic dye chosen as an organic pollutant. The influence of beading parameters like contact time, methyl violet concentration, pH, sorbent amount and agitation speed was studied. It was found that the adsorption capacities were notably influenced by the initial dye concentration, pH and bead dose. Indeed, the results found indicated that the equilibrium sorption of methyl violet by this adsorbent was reached in around 3 hours for the different concentrations studied (10 mg/L, 40 mg/L and 70 mg/L) with percentage dye removal of around 80% at the optimum bead amount of 2 g. The kinetic modeling had shown that the model of the pseudo-second-order kinetic governed the adsorption rate of methyl violet on alginate/brown algae composite beads.
Słowa kluczowe
Twórcy
  • Institue of Technology, University of Bouira, Bouira 10 000, Algeria
  • Laboratory of Materials and Sustainable Development (LMDD), Faculty of Sciences and Applied Sciences, University of Bouira, Bouira 10 000, Algeria
  • Departement of Process Engineering, Institute of Science, Morsli-Abdallah University Center of Tipaza, Tipaza 42 000, Algeria
  • Departement of Chemistry, Faculty of Sciences and Applied Sciences, University of Bouira, Bouira 10 000, Algeria
Bibliografia
  • 1. Abrishamkar, M., Andayesh, R., Hodae, H. 2020. Optimization of important factors on the adsorption of methyl violet by modified palm fiber using experimental design method. Advanced Journal of Chemistry-Section A, 3(3), 237-254.
  • 2. Al-Ghouti, M.A., Al-Absi, R.S. 2020. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive biomass from wastewater. Scientific Reports, 10 (1), 15928. https:/doi.org/10.138/s41598-020-72996-3
  • 3. Aoulad El Hadj Ali, Y., Ahrouch, M., Ait Lahcen, A., Demba N’daiye, A., El Yousfi, F., Stitou, M. 2021. Dried sewage sludge as an efficient adsorbent for polluants: cationic methylene blue removal case study. Nanotechnology for Environmental Engineering, 6(1). https:/doi.org/10.1007/s41204-021-00111-6.
  • 4. Bhatti, H.N., Mahmood, Z., Kausar, A., Yakout, S.M., Shair, O.H., Iqbal, M. 2020. Biocomposites of polypyrole, polyaniline and sodium alginate with cellulosic biomass: Adsorption-desorption, kinetics and thermodynamic studies for the removal of 2, 4-dichlorophenol. International Journal Biological Macromolecules, 153, 146-157. https: //doi.org/10.1016/j.ijbiomac.2020.02.306
  • 5. Bonetto, L.R., Ferrarini, F., De Marco, C., Crespo, J.S., Guegan, R., Giovanela, M. 2015. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, 6, 11-20. https://doi.org/10.116/j.jwpe.2015.02.006
  • 6. Cid, H., Ortiz, C., Pizarro, J., Barros, D., Castillo, X., Giraldo, L., Moreno-Pirajan, J.C. 2015. Characterization of copper (II) biosorption by brown algae Durvillaea Antarctica dead biomass. Adsorption, 21(8), 245-658. https://doi.org/10.1007/s10450-015-9715-3
  • 7. Contreras-Cortés, A., Almendariz-Tapia, F., Gόmez-Alvarez, A., Burgos-Hernández, A., Luque-Alcaraz, A., Rodríguez-Félix, F., Quevedo-Lόpez, M., Plascencia-Jatomea, M. 2019. Toxicological assessment of cross-linked beads of chitosan-alginate and aspergillus australensis biomass, with efficiency as biosorbent for copper removal. Polymers, 11(2), 222. https://doi.org/10.3390/polym11020222
  • 8. De Rossi, A., Rigueto, C.V.T., Dettmer A.A., Luciane M., Piccin, J.S. 2020. Synthesis, characterization, and application of saccharomyces cerevisiae / alginate composites beads for adsorption of heavy metals. Journal of Environmental Chemical Engineering, 8(4), 104009. https//doi.org/10.1016/j.jece.2020.104009
  • 9. Dulla., J.B., Tamana, M.R., Boddus, S., Pulipati, K., Srirama, K. 2020. Biosorption of copper (II) onto spent biomass of Gelidiella acerosa (brown marine algae): optimization and kinetic studies. Applied Water Science, 10 (2), 56. https//doi.org/10.1007/s13201-019-1125-3
  • 10. Durmaz, E.N., Sahin, S., Virga, E., De Beer, S., De Smet, L.C., De Vos, W.M. 2021. Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities. ACS Applied Poymer Materials, 3, 4347-4374. https//doi.org/10.1021/acsapm.1c00654
  • 11. Esmat, M., Farghali, A.A., Khedr, M.H., El-Sherbiny, I.M. 2017. Alginate-based nanocomposites for efficient removal of heavy metal ions. International Journal Biological Macromolecules, 102, 272-283. https//doi.org/10.1016/j.ijbiomac.2017.04.021
  • 12. Fang, S., Wang, G., Li, P., Xing, R., Liu, S., Qin, Y., Yu, H., Chen, X., Li, K. 2018. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. International Journal of Biological Macromolecules, 115, 754-761.
  • 13. He, J., Chen, J.P. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresource Technology. 160 (14), 67-78. https//doi.org/10.1016/j.biortech.2014.01.068He
  • 14.Jafari, H., Mahdavinia, G.R., Kazemi Heragh, B., Javanshir, Sh., Alinavaz, S. 2020. Basic dyes removal by adsorption process using magnetic focus vesiculosus (brown algae). Journal of Water and Environmental Nanotechnology, 5 (3), 256-269.
  • 15.Jayakumar, R., Rajasimman, M., Karthikeyan, C. 2015. Sorption and desorption of hexavalent chromium using a novel brown marine algae Sargassum myriocystum. Korean Journal Chemical Engineering, 32, 2031-2046. https//doi.org/10.1007/s11814-015-0036-8
  • 16. Kaur, N., Singh, B., Sharma, S. 2018. Hydrogels for potential food application: effect of sodium alginate and calcium chloride on physical and morphological properties. The Pharma Innovation Journal, 7 (7), 142-148.
  • 17. Kragović, M., Stojmenović, M., Petrović, J., Loredo, J., Pašalić, S., Nedeljković, I. 2019. Influence of alginate encapsulation on point zero charge (pHpzc) and thermodynamic properties of the natural and Fe (III)-modified zeolite. Procedia Manufacturing, 32, 289-293. https//doi.org/10.1016/j.promfg.2019.02.216
  • 18. Lim, L., Priyantha, N., Chan, C.M., Matassan, D., Ing, C.H., Kooh, M.R.R. 2014. Adsorption behavior of methyl violet 2B using duckweed: equilibrium and kinetics studies. Arabian Journal for Science and Engineering, 39 (9), 6757-6765. https//doi.org/10.1007/s13369-014-1224-2
  • 19. Mahini, R., Esmaeili, H., Foroutan, R. 2018. Adsorption of methyl violet from aqueous solution using brown algea Padina sanctae-crucis. Turkish Journal of Biochemistry, 43 (6), 623-631. https//doi.org/10.1515/jtb-2017-0333
  • 20. Merakchi, A., Bettayeb, S., Drouiche, N., Adour, L., Lounici, H. 2019. Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution. Polymer Bulletin, 76, 3535-3554. https//doi.org/10.1007/s00289-018-2557-x
  • 21. Minh, V.X., Dung, K.T.T., Lan, P.T., Dung, N.T. 2020. Study on Ni (II) adsorption by calcium alginate beads. Vietnam Journal Chemistry, 58 (3), 358-363. https//doi.org/10.1002/vjch.2019000195
  • 22. Mohy Eldin, M., Omer, A., Ma, W., Abd el-razik, T., Elmonem Ms, A.B.D., Sa, I. 2015. Novel smart pH sensitive chitosan grafted alginate hydrogel microcapsules for oral protein delivery: II. Evaluation of the swelling behavior. International Journal of Pharmacy Pharmaceutical Sciences, 7 (10), 331-337.
  • 23. Nordine, N., El Bahri, Z., Sehil, H., Fertout, R.I., Rais, Z., Benghrez, Z. 2016. Lead removal kinetics from synthtic effluents using Algerian pine, beech and fir sawdust’s: optimization and adsorption mechanism. Applied Water Science, 6, 349-358. https//doi.org/10.1007/s13201-014-0233-3
  • 24. Obradovic, B. 2020. Guidelines for general adsorption kinetics modeling. Hemijska industrija. 74 (1), 65-70. https//doi.org/10.2298/HENMIND200201006O
  • 25. Parlayici, Ş. 2022. Natural mineral and biopolymers based adsorbent for cationic dyes removal: glutaraldehyde cross-linked alginate/ kaolin bead. Journal of Materials and Environmental Science, 13 (1), 95-114. https//www.jmaterenvironsci.com
  • 26. Rakesh, P., Vipinand, K., Kanchan, K. 2015. Alginate beads by ionotropic gelation technic: formulation. Research Journal of Chemical Sciences, 5 (7), 45-47.
  • 27. Ren, D., Yao, Y., Chai, B. 2021. Study on the adsorption of heavy metals in sludge by calcium alginate cross-linked zeolite microspheres. Polish Journal of Environmental Studies, 30 (4), 3777-3786. https//doi.org/10.15244/pjoes/131156
  • 28. Suresh, S., Ravichandran, S., Pandya, I.Y., Sreeja Mole, S.S., Boselin Prabhu, S.R., Rrashanth, G.k. 2022. Alginate hydrogel adsorbents in adsorption of inorganic and organic pollutants: A review. Asian Journal of Chemistry, 34 (7), 1625-1632. https//doi.org/10.14233/ajchem.2022.23712
  • 29. Torres-Caban, R., Vega-Olivencia, C.A., Mina-Camilde, N. 2019. Adsorption of Ni2+ and Cd2+ from water by calcium alginate/spent coffee grounds composite beads. Applied Sciences, 9 (21), 4531. https//doi.org/10.3390/app9214531
  • 30. Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., Huang, J., Ok, Y.S., Chen, J., Gao, B. 2018. Alginate-based composites for environmental applications: A critical review. Critical Reviews Environmental Science Technology, 49 (4), 318-356.
  • 31. Wang, S., Vincent, T., Faur, C., Guibal, E. 2016. Alginate and algal-based beads for the sorption of metal cations: Cu (II) and Pb (II). International Journal of Molecular Sciences, 17 (9), 1453. https//doi.org/10.3390/ijms17091453
  • 32. Yadav, S., Asthana, A., Chakraborty, R., Jain, B., Singh, A.K., Carabineiro, S.A., Susan, M.A.B. 2020. Cationic dye removal using novel magnetic/activated charcoal/cyclodextrin/alginate polymer nanocomposite. Nanomaterials, 10 (1), 170.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c459eb1-0f17-48bb-92da-a8883098b17c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.