Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with real-time (RT) simulators applied in power electronic applications and implemented in a real inverter. The process of preparing and starting up an active rectifier prototype (with an active filter function), using the real-time OPAL RT simulator is given. The control system of the converter and the results of simulation using the Matlab/Simulink suite are discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
447–--460
Opis fizyczny
Bibliogr. 12 poz., rys., wz.
Twórcy
autor
- AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- ABB Corporate Research Center 31-038 Krakow, ul. Starowislna 13A, Poland
Bibliografia
- [1] Wang C., Zhuang Y., Jiao J., Zhang H., Wang C., Cheng H., Topologies and Control Strategies of Cascaded Bridgeless Multilevel Rectifiers, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 432–444 (2017).
- [2] Pirog S., Baszynski M., Modelling a single phase multicell DC/AC inverter using FPGA, Przegląd Elektrotechniczny, vol. 84, no. 2, pp. 84–87 (2008).
- [3] Yaramasu V., Wu B., Rivera M., Rodriguez J., A New Power Conversion System for Megawatt PMSG Wind Turbines Using Four-Level Converters and a Simple Control Scheme Based on Two-Step Model Predictive Strategy—Part II: Simulation and Experimental, IEEE Journal of Emerging and Selected Topics in Power Electronics, vo. 2, no. 1, pp. 14–25 (2014).
- [4] Baszynski M., Power factor correction boost rectifiers for the household appliances, Przegląd Elektrotechniczny, vol. 87, no. 3, pp. 237–242 (2011).
- [5] Dagbagi M., Hemdani A., Idkhajine L., Naouar M.W., Monmasson E., Slama-Belkhodja I., ADC-Based Embedded Real-Time Simulator of a Power Converter Implemented in a Low-Cost FPGA: Application to a Fault-Tolerant Control of a Grid-Connected Voltage-Source Rectifier, IEEE Transactions on Industrial Electronics, vo. 63, no. 2, pp. 1179–1190 (2016).
- [6] Stala R., Stawiarski L., Real-time models of PV arrays implemented in FPGAs, Przegląd Elektrotechniczny, vol. 86, no. 2, pp. 358–363 (2010).
- [7] Stala R., Penczek A., Mondzik A., Stawiarski L., A photovoltaic source I/U model suitable for hardware in the loop application, Archives of Electrical Engineering, vol. 66, no. 4, pp. 774–786 (2017).
- [8] Hardy T., Jewell W., Hardware-in-the-Loop Wind Turbine Simulation Platform for a Laboratory Feeder Model, IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 1003–1009 (2014).
- [9] Hassanpoor A., Roostaei A., Norrga S., Lindgren M., Optimization-Based Cell Selection Method for Grid-Connected Modular Multilevel Converters, IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2780–2790 (2016).
- [10] Dargahi M., Ghosh A., Davari P., Ledwich G., Controlling current and voltage type interfaces in power-hardware-in-the-loop simulations, IET Power Electronics, vol. 7, no. 10, pp. 2618–2627 (2014).
- [11] Huerta F., Tello R.L., Prodanovic M., Real-Time Power-Hardware-in-the-Loop Implementation of Variable-Speed Wind Turbines, IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1893–1904 (2017).
- [12] Blaabjerg F., Teodorescu R., Liserre M., Timbus A.V., Overview of Control and Grid Synchronization for Distributed Power Generation Systems, IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398–1409 (2006).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c43c240-baaf-49e1-89ea-4b710ea7596d