PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined algorithm for finding conservation laws and implectic operators for the Boussinesq-Burgers nonlinear dynamical system and its finite dimensional reductions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article the combined algorithm for finding conservation laws and implectic operators has been proposed. Using the Novikov-Bogoyavlensky method the finite dimensional reductions have been found. The structure of invariant submanifolds has been examined. Having analyzed phase portraits of Hamiltonian systems, partial periodical solutions have been found.
Rocznik
Strony
85--99
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
  • Ivan Franko National University of Lviv Lviv, Ukraine
autor
  • Ivan Franko National University of Lviv Lviv, Ukraine
Bibliografia
  • [1] Prykarpatsky A.K., Finite-dimensional reductions of conservative dynamical systems and numerical analysis, A.K. Prykarpatsky, S. Brzychczy, V.Hr. Samoylenko, Ukr. Math. Journ. 2001, 53. 2, 220-228
  • [2] Tao Chen, The generalized Broer-Kaup-Kupershmidt system and its Hamiltonian extension, Tao Chen, Li-Li Zhu, Lei Zhang, Applied Mathematical Sciences 2011, 5(76), 3767-3780.
  • [3] Prykarpatsky A.K., Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, A.K. Prykarpatsky, I.V. Mykytiuk, Kluwer, Netherlands 1999, 560 p.
  • [4] Hentosh О.E., Differential-geometric and Lie-algebraic Foundations of Integrable Nonlinear Dynamical Systems on Functional Manifolds, О.E. Hentosh, M.M. Prytuka, А.K. Prykarpatsky, Publish Center LNU Franko, Lviv 2006, 408 p. (in Ukrainian).
  • [5] Arnold V.I., Mathematical Methods of Classic Mechanics, Nauka, M.: 1979, 431 p. (in Russian).
  • [6] Bogoyavlensky O.I., On the connection of hamiltonian formalisms for stationary and nonstationary problems, O.I. Bogoyavlensky, S.P. Novikov, Functional Analysis and Its Applications 1976, 10, 1, 9-15 (in Russian).
  • [7] Blackmore D., Nonlinear Dynamical Systems of the Mathematical Physics: Spectral and Differential-geometrical Integrability Analysis, D. Blackmore, A.K. Prykarpatsky, V. Hr. Samoylenko, World Scientific Publ., NJ, USA 2011, 563 p.
  • [8] Mytropolsky Ju.А., Integrable dynamical systems: spectral and differential-algebraic aspects, Ju.А. Mytropolsky, N.N. Bogoliubov, А.K. Prykarpatsky, V.Gr. Samoylenko, Nauk. Dumka, K.: 1987, 296 p. (in Russian).
  • [9] Prykarpatsky А.K., On the one construction of finite dimensional reductions on functional manifolds, А.K. Prykarpatsky, O.G. Bihun, Math. methods and phis.-mech. fields, 48, 1, 7-14 (in Ukrainian).
  • [10] Prykarpatsky А.K., Algebraic Aspects of Integrability of Dynamical Systems on Manifolds, А.K. Prykarpatsky, I.V. Mykytiuk, А.М Samoylenko, Nauk. Dumka, K., 1991, 288 p. (in Russian).
  • [11] Samoylenko А.М., Algebraic-analytical Aspects of Complete Integrable Systems and Their Perturbations, А.М. Samoylenko, Ya.А. Prykarpatsky, Institute of Mathematics of NAN Ukraine, К.: 2002, 237 p. (in Ukrainian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c361946-97b1-4f4d-b179-1d5955d1811b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.