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Abstract. In the article the combined algorithm for finding conservation laws and implectic
operators has been proposed. Using the Novikov-Bogoyavlensky method the finite
dimensional reductions have been found. The structure of invariant submanifolds has been
examined. Having analyzed phase portraits of Hamiltonian systems, partial periodical
solutions have been found.
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1. General scheme of the Combined Algorithm

Conservation laws as a conception play a significant role in the numerical analysis
of dynamical systems. Since conservation laws are functionals that remain constant
with respect to evolution of a dynamical system, they are useful for verification
of numerical schemes constructed for a such system, even if the exact solution is
unknown. Moreover, according to the solitary theory the existence of infinite hier-
archy of conservation laws is connected with complete integrability of a nonlinear
dynamical system.

There are several ways for finding conservation laws for a nonlinear dynamical
system

u, = Kul, )

where K : M — T'(M) denotes the Frechét smooth tangent vector field on the
smooth /-periodical manifold M < C,” (R,R”), representing a nonlinear dynamical

system (1). There are two main methods: the asymptotical method (using Lax
equation and asymptotical expansion) and the direct method (the main idea is solving
problem for undetermined coefficients). The first method in some cases can not be
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applied to a general dynamical system (1), the second method works quickly if
there are very few undetermined coefficients. When there are many unknowns,
the method processing becomes slower and slower.

If functionals

X0 +/
7= [ oluldxicz, @)

x0

remain constant along vector field (1):

dr

dt =0 ©)

Klu]

they are conservation laws for system (1).
Let D(M) be the space of Frechét smooth functionals on manifold M. We
define the operator grad : D(M)— T" (M) by

SF
dF = 4
gra 5 (4)

for F € D(M), where 6(-)/du is Euler variational derivative [1]

8O _& o dY) a0
i 0(1)( j

pam dx) ou®’

In this paper we propose a combined algorithm for finding conservation laws

(2) in a few steps:

e Step 1. Find few conservation laws by means of undetermined coefficients
(direct method), sufficient for finding an implectic operator.

e Step 2. Construct first operator $ by means of a differential-algebraic method.

e Step 3. If operator 4 satisfies Nother's equation, find corresponding Hamiltonian
H 4 using Hamiltonity property of the system u, = —9grad H = K[u], we obtain
the first implectic operator .

e Step 4. By means of the differential-algebraic method construct second
operator 7.

® Step 5. Test operator 77: if operator 77 satisfies Nother’s equation, then system
(1) is bi-Hamiltonian with the second implectic operator 77, and the recursion
operator can be found as A = 97'7.

This recursion operator generates an infinite hierarchy of conservation laws and
their gradients are expressed as follows: grady,,, = Agrady,,ie Z,.
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Next conservation laws are obtained explicitly, without asimptotic expansions
or solving systems of linear algebraic equations. This implies fast processing for
finding conservation laws.

In the next sections we will examine the application of this algorithm for the
Boussinesq-Burgers nonlinear dynamical system and we will use obtained results
for finding finite dimensional reductions.

2. Problem formulation

Let Mc CP(R,R*) be I-periodical smooth manifold. We consider the
Boussinesq-Burgers nonlinear dynamical system [2] given on manifold A/:

u, = lvx —2uu,
2
vt = %uxxx - 2(uv)x

= K[u,v], (5)

where u=u(x,t),v=v(x,t) are functions, K:M — T(M) denotes the Frechét

smooth tangent vector field on the manifold M representing the evolution of a non-
linear dynamical system (5). Setting parameter o =1 in Broer-Kaup-Kupershmidt
(BKK) system [2]

l-a 1

u, = - uﬂﬂ+—vx
2 2

. =0:(2—0:)14 +1—a

13 2 XXX 2

—2uu,
= K[u,v],
Vi — 2(uv)

X

we obtain system (5). Implectic operators and recursion operator for Broer-Kaup-
Kupershmidt have been found in [2].

In this article we shall find conservation laws for (5) by means of a combined
algorithm. Moreover, we construct a corresponding finite dimensional invariant
submanifold for a Boussinesq-Burgers nonlinear dynamical system (5). Differential-
-geometric properties of this submanifold should be examined. Also we shall
construct Hamiltonian system and upon its phase portrait we shall find the set of
appropriate initial data to obtain periodical solutions. Furthermore we will present
a phase portrait for the Hamiltonian system and show a partial exact solution.

3. Application of the combined algorithm: conservation laws,
implectic operators, recursion operator

In this section we will use the combined algorithm proposed in the first section.
Using the method of undetermined coefficients we have found the three first
conservation laws.
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Theorem 1. The following functionals are conservation laws for system (5):

.X0+l XO+1 .X0+l
Vo= I udx, y, = I vdx,y, = I uvdsx. (6)
*0 *0 *0

Proof. According to invariance equality (3) for functionals (1) we have to verify

that % EO,% EO,% =0. Since manifold M is [-periodical,
dt Klu,v] dt Klu,v] dt Klu,v]
d}/ X0 +/ X0 +/ % ",
we  obtain _to = J. ”f|1<[u = I (1/2v, —2uu, )dx = (1/2v —u2] =0,
Kyl 5 ’ P "o

d xo +/ xo +/

V4 _ _ _ xo+
= [ vl = [ (V2 =26 )dx = (120, —ur) 7" =0,

Klu,v] XQ xq

d XO +/ XO +/
& - ,[ (uv), K[u,v] dx = ,[ (uv,|K[u v] +vu,|K[u v] )dx =0.

dt Klu,v] X0 ' xq ’ ’

Having found the three first conservation laws we can construct implectic
operator by means of a differential-algebraic algorithm. Let 0 denote a partial

derivative with respect to variable x: 0= 9 .
X

Proposition 1. System (5) possesses implectic operator 8 :

(0 2
3—(6 oJ 7)

and the corresponding Hamiltonian function is following
X0 +/ 1 1
- 2 2 2
Hy= ;[ [u v—zv +Zuxjdx. (8)

Proof. This implectic operator is given in [2]. We show that we obtain this

operator by means of a differential algebraic algorithm. Let us denote
x0+1 JCO+Z

H, = H,[u,v]=-p,[u,v]= I (uv)dx and bilinear form < a,b>= J abdx,Ya,be M.
X0 X0
Using a differential algebraic algorithm we obtain the following expressions:

1 1
H =—<uyv>-—-—<yv>——<yu>=
g 2 2

1 _1 1 _1
=E<a vu, > +E<a u,v, >=<o,u, >+<0,,v, >,
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1 .- | . .
where o, = 58 v,0, = 56 "u. Let us construct operators o’,6",6" according to

-1 -1 -1
Bro=14 2 O o= 0 O g0 9|
o o o0 o 0

0 0
Inverse operator &, exists and itis 4 =6, = (8 0}

Since operator $ satisfies Nother's equation 9, — 9K’ — K'9=0 operator 4 is

implectic, where operators K, K" are following

e —20u 1/20 g = | —2u0 —1/26% +2vd
128° =20v —20u ) —-1/26 2ud '

With respect to Hamiltonity property of the system (5) we obtain problem

find functional H4 such that
Klu,v]=-9gradH,.

Thus, we have the following expressions:
(0 O\ OHg/bu) _(1/2v, —2uu,
o O\SHy/v) \12u,, —2(uh)x )
Expressions  8H g/du = —1/2u,, +2uv,0H ¢/6v = —1/2v +u*> yield Hamiltonian

function (8), moreover H, is the conservation law for system (5).

Thus we have performed yet the first three steps of the combined algorithm.
We perform the next steps below.

Proposition 2. System (5) is bi-Hamiltonian, and second implectic operator is

1/20 —Ou
- 9
7 (—u@ 1/283—v8—8vJ ©

and corresponding Hamiltonian is

X0 +1

H,= H,[u,v]=-y,[u,v]= .[ (uv)dx. (10)

x0
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Proof. Let us consider Hamiltonian H,:
Hy=<uv——v +—u,,1><w,u>-——<v,v>+—<u,u, >=
4 4 4 4
=-< 8_1(uv),ux > +% <u,,u,> +% <0y, >=
=< iﬁ_lv —0 (wv)u, > +< %6_1v,vx >,

According to the proof of Theorem 2 and [3] we obtain operators ¢’,6"",0;":

la—a—lv —07'u ) —la+va-l 0
o'= | Lo =] 4 | ,
0 —o! ud™ ——5!
4 4
) la 0 v—vo -5
0,'=c'-0" = 2 1 .
—ud™! —o!
2

Operator 7 has been obtained from the relationship 7 = 96;'9:

1 4 1 —1
0 aj 36—8 v—v0 -0 u (O 8)

a O _ua—l 1 a O

n=296,'9= (
—o!
2

18 —Ou
| 2

—ud 183—va—av
2

Since operator 77 satisfies Nother’s equation 77, — 7K — K'n =0 operator 77 is
implectic, and system (5) is bi-Hamiltonian.

Theorem 2. System (5) possesses an infinite hierarchy of comservation laws
{;/,- },z’ e Z,, which are generated by a recursion operator
— 0o 162 0 hvo—v
A= 2 : (11
— —u
2

with a gradient relationship grad y,,, = Agrady,,ie Z,.
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Proof. Since operators ¢ and 7 are implectic and expression

Sgrady,,, =ngrady, (12)

holds for all i € Z, [4]. Having multiplied (12) by 9~ we obtain
grady,.. =9 'ngrady,icZ..

hence A =977 is a recursion operator. However
g0 o
o' 0

J 18 —Oou — 070 %éz—a_lvé—v

we obtain recursion operator:

2 =

[0 o
A=9 77—( 1 |
—ud 56 —v0 —0v 5 —u

o 0

Using these obtained results, we have found the next conservation laws in the
hierarchy

X0 +1

s 03 5, 3 5,01
= —uwv+—uvt ——uu, +— dx,
Va I ( uvy 4uv 4uux 4uxvx X
x0
o 1, 3 5 |
4 2.2 3 2 2 2 2
= Uv—uv +—=v +—uu,——vu, —uu.v,+—((v, —u dx.
}/5 .[ ( 2 8 2 X 8 X xVx 16( X xx))

Functional y, we will use for four-dimensional reduction of the system (5).

4. Finite dimensional reduction on two-dimensional invariant
submanifold

Finding the appropriate set of initial conditions for an infinite dimensional
conservative nonlinear dynamical system for special solutions like a solitary wave
on periodical functional manifolds is a burning issue for numerical investigation
of such systems [5] and connected with some difficulties.

We will use the finite dimensional reduction method by Novikov-Bogoyavlen-
sky [6] for constructing exact solutions for a nonlinear dynamical system by means
of generalizations presented in [1, 7-10].
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Let us consider the invariant submanifold M? e M as the set of critical points
of the following Lagrangian functional L, € D(M):

x0+l
L,[u,v]:= _[[cﬂqurcg(uzv—%vz+%u§ﬂdx, (13)

X0
where ¢, ,c, are arbitrary constants.

According to Lax proposition [4, 10] a finite dimensional functional submanifold
for dynamical system (5) is determined by M?* := {(u,v) e M :gradL,[u,v]= 0}.
Having evaluated gradL, using (4) we obtain

M? = (u,v)eM:5—|'2=C V+2C3W_1C9”xx=0’
su " 2
(14)

oLy _ cpu+ cou’ —%cgv = O}.

2c
Constraints (14) yield v=""u+2u". Using the Gelfand-Dickey relationship
Cg
[3], the differential of (13) is:

1 1 d(1
dL, = [cﬂv +2cg4uv —Ecguxx )du + [cﬂu + cgu2 - Ecgvjdv + E(E cguxduj

which yields 1-form [3, 7] a" == %cguxdu.

(2)

We determine symplectic structure @'~ as an outer differentiation of 1-form

aV:
o®? =daV = d(%cgux)Adu (15)
on the submanifold M?*e M.

However submanifold M° € M is simplectic with the structure (15), we introduce
canonical variables on M?*e M:

p:=%cgux,q:=u. (16)

Elements of the phase space #,v in canonical variables (15) of submanifold
M?*c M are

_ 2¢, )
v=—>="qg+2q (17
Cg
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Hamiltonian 4§ which corresponds to vector field d/dx has been found from

(x)
the determining relationship dhy _ —( A, u, + Ay vxj.
dx ou ov

Hence, the founded Hamiltonian A{* in local coordinates is:
B = 2 1 > 15
h Y = —c,uv —cgul v+zcgv +Zux,

and in canonical coordinates (16) of submanifold M* c M has following form

2

. 1 c
WNq.p)=—p’ ——Lq" —2c,q" —coq*. (18)
Cy Cy

According to [7] the Hamiltonian system has been obtained

dq _2p
dx ¢y’

19
&2 )

=2 v 6c,q” +4cyq’
b Cy I]q 99

which has three fixed points in a phase space: two hyperbolic points with

c
coordinates (g, py) = (0,0), (90, P0) = [——”,OJ and elliptic point with coordinates
Cy

(0> Po) = (—;—OJ

Cyg

0.0

-0.5

Fig. 1. Phase portrait of the system (19) with ¢, =1, cg=-1
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The phase portrait of the system (19) provides important information for
identifying the set of initial conditions for periodical solutions and is shown in
Figure 1. If initial data for the system (19) are taken from the internal region of
limit cycle of the system (19) we will obtain a periodical solution for problem (5).

Vector field d/dt is Hamiltonian too. The Hamiltonian /4", which corresponds
to vector field d/dt has been found from the determining relationship

()
ah_ _ —(&2 u, + Ay v,j . (20)
dx ou W
and A" has the following form in local coordinates:
c c c
B = 2c,u*v+2cu’y ——1v? — cquv’ + —Luy ——Luu, —c—‘guzuxx +c—‘9umv,
2 2 4
which in canonical variables (16) of invariant submanifold M?*e M is
c c c) c}
1 (q.p)= (—”Jh&”(q, p=%p ¢ -2t - g 2D
Cyg Cy € Cg
Finally, we obtain Hamiltonian system:
dq _ 2¢,p
dat cs
d 2c§q 6¢2q’ 22)
P '27 +—2 +4c,7q3,
dt ¢ Cg

which possesses three fixed points in the phase space: the same as for system (19).

The phase portrait of system (22) is the same as the portrait of system (19). If
we choose initial data for system (22) from the region which provides periodical
solution we will obtain periodical solution.

Theorem 3. Boussinesq-Burgers nonlinear dynamical system (5) reduced on the
invariant two dimensional submanifold M* < M is exactly equivalent to the set of
two commuting canonical Hamiltonian flows (19) and (22) that are completely
integrable by quadratures systems. The corresponding Hamiltonian functions are
given by expressions (18) and (21).

5. Partial solutions on the two-dimensional invariant submanifold

We obtain a partial exact solution of the dynamical system (5) via layering
vector fields d/dx (19) and d/dt (22).
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Exact solutions for systems (19) and (22) can be written in the following form:

q q 3
x=x= | cslda : t—tozjl\/ %

dq,
70 2\/c$q2+203q3+2c§q4+ﬁ q02 c,37q2+2c,7c9q3+ 2cnc§q4+ﬂ

where x,%,,q, denote arbitrary real values and [ is arbitrary real parameter.

Let coefficients of the system (5) and coefficients in the Lagrange functional
(13) are following ¢, =1,c,=-1. We integrate system (19), which corresponds
vector field d/dx on the domain x € (0,10] with the step Ax =0.1 by variable x

with initial data (g, = 0.5, p, = 0.2), which are in the limit cycle of system (19).
However, the following relationships

u=q,v=2q(q-1) (23)

hold on invariant submanifold M* c M, then in the initial moment of time #,=0
solutions #(x,0),v(x,0) of nonlinear dynamical system (5) are shown in Figure 2.

NN N

0.65

0.55 -

t

Z'U . \J 5 W 0 "
Fig. 2. Solution u(x,0) and v(x,0) of the system (5) with ¢, =1, cg=—1 in the initial
moment of time 7,=10

2 4 ] 8 10

We integrate the system (22) associated with vector field d/dt on the domain
t€(0,10] with step Af=0.1 using the following initial data (qo =0.5,py= 0.2)
which are in the limit cycle of system (22). Hence we obtain time evolution of
the solution in the point x=0: ¢(0,¢), p(0,7).

At every moment of time ¢ = ¢, we integrate system (19) with initial data

(@0 = q(0,1,), py = p(0,1,))-

to obtain solutions u(x,),v(x,t).

Using relationships (23) we obtain exact solutions of nonlinear dynamical
system (5) for u = u(x,¢) and v =v(x,¢) which are given in Figure 3.
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Fig. 3. Solutions u = u(x,) and v =v(x,¢) of the system (5) with ¢, =1, cg=~1

6. Finite dimensional reduction on the four-dimensional invariant
submanifold

Let us consider the following Lagrange functional

xo+!
L,[u,v]:= j [cnuv+c9(u2v—%v2+%ufJ + 64(— u3v+%uv2—%uuf +iuxvxﬂdx.
0 (24)
Similar to the first case, we find invariant submanifold M*c M :
M*= {(u,v) e M : gradl ,[u,v]= 0} as fixed points of Lagrange functional (24):

(u,v)e M:cﬂv+2cguv—3c4u2v+
M= +§c v? +§c u’ —lu2 +ic uu —lc Ve =0 (25)
4 4 4 44 x 7 X 2 44 xx 4 4V xx > (*

) 3 1 3 1
Cu+Cgu” —cqu” ——Cgv+—uv——cyit,, =0
2 4 4

Thus, on manifold (25) exists symplectic structure @ = dp, A dq, + dp, A dq,

in the following form
oP=d lc u.+c (—éuu +lv) Adu+d lcu Adv (26)
2 9% x 4 2 x 4 X 4 4% x
Canonic Hamiltonian variables {p,,q,, p,,q,} are
1 3 1 1
2 Ecaux +¢y _Euux +va s 1= U, Po =Zc4ux, 4=V

on submanifold M*c M.
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Elements {u,v,u,,v,,u,,v,} can be rewritten on submanifold M*c M as
follows:

4 4
U=4q,V=4qs,Uy zc_Pza Vx =C_Z(C4P1 —2¢yp; +6C4P2ql)a
4 4

2
Uy = 0_2(2077‘]1 + 209‘]12 - 2C4‘]13 —Cyqr +3c419> )>
4

Upee =

(48p22 — 8C”C3q1 + 24(3407;‘]12 — 8c§q12 + 3204cgq13 — 2403(]14 + 4c4c,7q2 +

o
= T

+ 403% —16¢,c9q19, + 2403‘]12% + 304%?22)

Hamiltonian functions #4{” and h{’ can be obtained by determining

(x) Q]
dh, 2_((31_4 ‘s o, vx), dh _ _(&4 . L, ij
x ou v dx ou ov K]

which have the following form in the canonical coordinates of submanifold M *c M:

relationships:

o4 de,p? 12p32 coq> 3
pp =Pl TPy | ZPOh g —cogiqy +eigiqy + 2~ eiqiqd 27)
Cy cy cy 4 4

2 2 2
o = Pl _Acypipy Aenpr | Acips | Apaay Seopiql  di

Cy Ci Ci Ci Cy Ci Cy
201709‘]13 4o 5 6 2D | CpCsdda
—+2¢,q) — +2c4q; —caqy + + - (28)
Cy Cy Cy c4
2 2 2 22 3
Csqi q 42 cyq C4q
03611242 +%_209¢]13¢]2 +C4¢]14€2 - —:TZ+1/2cgqlq22 -1
4 4

As a result, we have reduced our Boussinesq-Burgers nonlinear dynamical
system (5) on the constructed four dimensional invariant submanifold M*c M.

The system for the d/dx is obtained from (27) and provides information for
initial data for the Cauchy problem

dq, _ 4p;

dx ¢y’

d 12p3 3c.q2
ﬁz_ichnqzJrzclstf)'lq'z_3C49'12%+ 4q2’

dx c4 4 (29)
dq, _ 4p -~ 8cgps " 24pyq,

dx ¢ c e

@:C G +coq’ —c q3_cs‘12 +3C4‘I1(I2

AL IR (et ) ,
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The system for the d/dt is following:

dg, _2py _A4cspy  APagy
dt C4 Ci C4 ’
2 2
ap __4Apps " 86‘92]922 + 2¢y41 + 6¢,Csi —8C,76]13 4
dt C4 C4 C4 C4
23 2
+—4c5’q1 —10cyq, +6c,q; — CnCeda | 2¢,419, 299> +
Cy Cy C4
2
c
+6¢5q7 9y —4¢441qr — 32(1 Z, (30)
dg, _ 4cgp + 8¢, P> n 8¢;ps n 4pigr  16¢yprq, + 4p12q,
2 2 3 2 >
dt cy cy ¢y Cy cy Cy
2 e 2 2
% ) R TR (I Y B
t cy cy cy
2 2
2 | Coqr 3¢4q5
B S + )
5 2, 399> 8

Theorem 4. Boussinesq-Burgers nonlinear dynamical system (5) reduced on the
invariant four-dimensional submanifold M* < M is exactly equivalent to the set of
two commuting canonical Hamiltonian flows (29) and (30) that are completely

integrable by quadratures systems. The corresponding Hamiltonian functions are
given by expressions (27) and (28).

Conclusions

Thus, in this paper we present a combined algorithm for finding conservation
laws and an implectic operator. This method has several advantages: having found
few conservation laws, we can obtain implectic operators and furthermore construct
a recursion operator for explicit evaluation of the conservation laws. Moreover, we
have shown existence of the infinite hierarchy of conservations laws for Boussinesg-
-Burgers nonlinear dynamical system. Using conservation laws, the finite dimen-
sional reduction on invariant two-dimensional and four-dimensional submanifolds
has been performed. Initial conditions for periodical solutions for dynamical system
have been found.



Combined algorithm for finding conservation laws and implectic operators for the Boussinesq-Burgers ... 99

References

[1] Prykarpatsky A.K., Finite-dimensional reductions of conservative dynamical systems and
numerical analysis, A.K. Prykarpatsky, S. Brzychczy, V.Hr. Samoylenko, Ukr. Math. Journ.
2001, 53. 2, 220-228.

[2] Tao Chen, The generalized Broer-Kaup-Kupershmidt system and its Hamiltonian extension,
Tao Chen, Li-Li Zhu, Lei Zhang, Applied Mathematical Sciences 2011, 5(76), 3767-3780.

[3] Prykarpatsky A.K., Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds:
Classical and Quantum Aspects, A.K. Prykarpatsky, [.V. Mykytiuk, Kluwer, Netherlands 1999,
560 p.

[4] Hentosh O.E., Differential-geometric and Lie-algebraic Foundations of Integrable Nonlinear
Dynamical Systems on Functional Manifolds, O.E. Hentosh, M.M. Prytuka, A.K. Prykarpatsky,
Publish Center LNU Franko, Lviv 2006, 408 p. (in Ukrainian).

[5] Arnold V.I., Mathematical Methods of Classic Mechanics, Nauka, M.: 1979, 431 p. (in Russian).

[6] Bogoyavlensky O.I., On the connection of hamiltonian formalisms for stationary and
nonstationary problems, O.I. Bogoyavlensky, S.P. Novikov, Functional Analysis and Its
Applications 1976, 10, 1, 9-15 (in Russian).

[7]1 Blackmore D., Nonlinear Dynamical Systems of the Mathematical Physics: Spectral and
Differential-geometrical Integrability Analysis, D. Blackmore, A.K. Prykarpatsky, V. Hr. Samoy-
lenko, World Scientific Publ., NJ, USA 2011, 564 p.

[8] Mytropolsky Ju.A., Integrable dynamical systems: spectral and differential-algebraic aspects,
Ju.A. Mytropolsky, N.N. Bogoliubov, A.K. Prykarpatsky, V.Gr. Samoylenko, Nauk. Dumka,
K.: 1987, 296 p. (in Russian).

[9] Prykarpatsky A.K., On the one construction of finite dimensional reductions on functional
manifolds, A.K. Prykarpatsky, O.G. Bihun, Math. Methods and Phis.-mech. Fields, 48, 1, 7-14
(in Ukrainian).

[10] Prykarpatsky A.K., Algebraic Aspects of Integrability of Dynamical Systems on Manifolds,
A K. Prykarpatsky, I.V. Mykytiuk, A.M Samoylenko, Nauk. Dumka, K., 1991, 288 p. (in Russian).

[11] Samoylenko A.M., Algebraic-analytical Aspects of Complete Integrable Systems and Their
Perturbations, A.M. Samoylenko, Ya.A. Prykarpatsky, Institute of Mathematics of NAN
Ukraine, K.: 2002, 238 p. (in Ukrainian).






