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Abstract. In the article the combined algorithm for finding conservation laws and implectic 

operators has been proposed. Using the Novikov-Bogoyavlensky method the finite 

dimensional reductions have been found. The structure of invariant submanifolds has been 

examined. Having analyzed phase portraits of Hamiltonian systems, partial periodical 

solutions have been found. 
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1. General scheme of the Combined Algorithm 

Conservation laws as a conception play a significant role in the numerical analysis 

of dynamical systems. Since conservation laws are functionals that remain constant 

with respect to evolution of a dynamical system, they are useful for verification 

of numerical schemes constructed for a such system, even if the exact solution is 

unknown. Moreover, according to the solitary theory the existence of infinite hier-

archy of conservation laws is connected with complete integrability of a nonlinear 

dynamical system. 

There are several ways for finding conservation laws for a nonlinear dynamical 

system 

 ],[= uKu
t

 (1) 

where )(: MTMK →  denotes the Frechét smooth tangent vector field on the 

smooth l-periodical manifold ( )n
l

RRCM ,

∞

⊂ , representing a nonlinear dynamical 

system (1). There are two main methods: the asymptotical method (using Lax 

equation and asymptotical expansion) and the direct method (the main idea is solving 

problem for undetermined coefficients). The first method in some cases can not be 
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applied to a general dynamical system (1), the second method works quickly if 

there are very few undetermined coefficients. When there are many unknowns, 

the method processing becomes slower and slower. 

If functionals 
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remain constant along vector field (1):  
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they are conservation laws for system (1). 

Let )(MD  be the space of Frechét smooth functionals on manifold M . We 

define the operator )()(: MTMDgrad
∗

→  by 
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for )(MDF ∈ , where uδδ )/(⋅  is Euler variational derivative [1] 
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In this paper we propose a combined algorithm for finding conservation laws 

(2) in a few steps: 

• Step 1. Find few conservation laws by means of undetermined coefficients 

(direct method), sufficient for finding an implectic operator. 

• Step 2. Construct first operator ϑ  by means of a differential-algebraic method. 

• Step 3. If operator ϑ  satisfies Nöther's equation, find corresponding Hamiltonian 

ϑH  using Hamiltonity property of the system ],[== uKHgradu
t ϑϑ−  we obtain 

the first implectic operator ϑ . 

• Step 4. By means of the differential-algebraic method construct second 

operator η . 

• Step 5. Test operator η : if operator η  satisfies Nöther’s equation, then system 

(1) is bi-Hamiltonian with the second implectic operator η , and the recursion 

operator can be found as ηϑ
1

=
−

Λ . 

This recursion operator generates an infinite hierarchy of conservation laws and 

their gradients are expressed as follows: .,=
1 ++

∈Λ Zigradgrad
ii

γγ  
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Next conservation laws are obtained explicitly, without asimptotic expansions 

or solving systems of linear algebraic equations. This implies fast processing for 

finding conservation laws. 

In the next sections we will examine the application of this algorithm for the 

Boussinesq-Burgers nonlinear dynamical system and we will use obtained results 

for finding finite dimensional reductions. 

2. Problem formulation 

Let ),(
2

RRCM l

∞

⊂  be l-periodical smooth manifold. We consider the 

Boussinesq-Burgers nonlinear dynamical system [2] given on manifold :M  
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where ),(=),,(= txvvtxuu  are functions, )(: MTMK →  denotes the Frechét 

smooth tangent vector field on the manifold M  representing the evolution of a non- 

linear dynamical system (5). Setting parameter 1=α  in Broer-Kaup-Kupershmidt 

(BKK) system [2] 
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we obtain system (5). Implectic operators and recursion operator for Broer-Kaup-

Kupershmidt have been found in [2]. 

In this article we shall find conservation laws for (5) by means of a combined 

algorithm. Moreover, we construct a corresponding finite dimensional invariant 

submanifold for a Boussinesq-Burgers nonlinear dynamical system (5). Differential- 

-geometric properties of this submanifold should be examined. Also we shall 

construct Hamiltonian system and upon its phase portrait we shall find the set of 

appropriate initial data to obtain periodical solutions. Furthermore we will present 

a phase portrait for the Hamiltonian system and show a partial exact solution. 

3. Application of the combined algorithm: conservation laws, 

implectic operators, recursion operator 

In this section we will use the combined algorithm proposed in the first section. 

Using the method of undetermined coefficients we have found the three first 

conservation laws. 
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Theorem 1. The following functionals are conservation laws for system (5): 
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Having found the three first conservation laws we can construct implectic 

operator by means of a differential-algebraic algorithm. Let ∂  denote a partial 

derivative with respect to variable x : 
x∂

∂
∂ = .  

Proposition 1. System (5) possesses implectic operator ϑ : 
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 and the corresponding Hamiltonian function is following 
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Proof. This implectic operator is given in [2]. We show that we obtain this 

operator by means of a differential algebraic algorithm. Let us denote  
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Using a differential algebraic algorithm we obtain the following expressions: 
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Expressions 2
1/2=/,21/2=/ uvvHuvuuH

xx
+−+− δδδδ

ϑϑ
 yield Hamiltonian 

function (8), moreover ϑH  is the conservation law for system (5).  

Thus we have performed yet the first three steps of the combined algorithm. 

We perform the next steps below.  

 
Proposition 2. System (5) is bi-Hamiltonian, and second implectic operator is  
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Proof. Let us consider Hamiltonian ϑH : 

>=,<
4

1
>,<

4

1
>,>=<,1

4

1

4

1
=<

222

xxx
uuvvuuvuvvuH +−+−ϑ  

( ) >=,<
4

1
>,<

4

1
>,<=

11

xxxx
vvuuuuv

−−

∂++∂−  

( ) .>,
4

1
<>,

4

1
=<

111

xx
vvuuvv

−−−

∂+∂−∂  

According to the proof of Theorem 2 and [3] we obtain operators 1

2

*
,,

−

′′ θσσ :  

,

4

1

0
4

1

=,

4

1
0

4

1

=
11

1

*

1

11

















∂−∂

∂+∂−
′

















∂

∂−∂−∂
′

−−

−

−

−−

u

vuv

σσ  

.

2

1

2

1

==
11

111

*1

2

















∂∂−

∂−∂−∂−∂
′−′

−−

−−−

−

u

uvv

σσθ  

Operator η  has been obtained from the relationship ϑϑθη
1

2
=

−

:  

=
0

0

2

1

2

1

0

0
==

11

111

1

2 








∂

∂

















∂∂−

∂−∂−∂−∂









∂

∂

−−

−−−

−

u

uvv

ϑϑθη  

.

2

1

2

1

=
3

















∂−∂−∂∂−

∂−∂

vvu

u

 

Since operator η  satisfies Nöther’s equation 0=
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implectic, and system (5) is bi-Hamiltonian. 
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Proof. Since operators ϑ  and η  are implectic and expression 
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Using these obtained results, we have found the next conservation laws in the 

hierarchy 
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Functional 
4

γ  we will use for four-dimensional reduction of the system (5). 

4. Finite dimensional reduction on two-dimensional invariant 

submanifold 

Finding the appropriate set of initial conditions for an infinite dimensional 

conservative nonlinear dynamical system for special solutions like a solitary wave 

on periodical functional manifolds is a burning issue for numerical investigation 

of such systems [5] and connected with some difficulties. 

We will use the finite dimensional reduction method by Novikov-Bogoyavlen- 

sky [6] for constructing exact solutions for a nonlinear dynamical system by means 

of generalizations presented in [1, 7-10]. 
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Let us consider the invariant submanifold MM ∈
2

 as the set of critical points 

of the following Lagrangian functional )(
2

MD∈L : 
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Hamiltonian )(
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Fig. 1. Phase portrait of the system (19) with 1=1,= −ϑη cc  
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The phase portrait of the system (19) provides important information for 

identifying the set of initial conditions for periodical solutions and is shown in 

Figure 1. If initial data for the system (19) are taken from the internal region of 

limit cycle of the system (19) we will obtain a periodical solution for problem (5). 

Vector field dtd/  is Hamiltonian too. The Hamiltonian )(
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to vector field dtd/  has been found from the determining relationship  
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 Finally, we obtain Hamiltonian system: 
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which possesses three fixed points in the phase space: the same as for system (19). 

The phase portrait of system (22) is the same as the portrait of system (19). If 

we choose initial data for system (22) from the region which provides periodical 

solution we will obtain periodical solution. 
 

Theorem 3. Boussinesq-Burgers nonlinear dynamical system (5) reduced on the 

invariant two dimensional submanifold MM ⊂
2

 is exactly equivalent to the set of 

two commuting canonical Hamiltonian flows (19) and (22) that are completely 

integrable by quadratures systems. The corresponding Hamiltonian functions are 

given by expressions (18) аnd (21). 

5. Partial solutions on the two-dimensional invariant submanifold 

We obtain a partial exact solution of the dynamical system (5) via layering 

vector fields dxd/  (19) and dtd/  (22). 



Combined algorithm for finding conservation laws and implectic operators for the Boussinesq-Burgers … 95

Exact solutions for systems (19) and (22) can be written in the following form: 

∫∫
+++

=−

+++

=−

q

q

q

q

dq
qccqccqc

c
tt

qcqcqc

dqc
xx

00

42323

3

0
42322

0

222

1
,

222 ββ ϑηϑηη

ϑ

ϑϑη

ϑ
, 

where 
000

,, qtx  denote arbitrary real values and β  is arbitrary real parameter. 

Let coefficients of the system (5) and coefficients in the Lagrange functional 

(13) are following 1=1,= −ϑη cc . We integrate system (19), which corresponds 

vector field dxd/  on the domain (0,10]∈x  with the step 0.1=x∆  by variable x  

with initial data ( )0.2=0.5,=
00

pq , which are in the limit cycle of system (19). 

However, the following relationships 

 1)(2=,= −qqvqu               (23) 

hold on invariant submanifold MM ⊂
2

, then in the initial moment of time 0=
0
t  

solutions ,0)(,0),( xvxu  of nonlinear dynamical system (5) are shown in Figure 2. 

 

     

Fig. 2. Solution ,0)(xu  and ,0)(xv  of the system (5) with 1=1,= −ϑη cc  in the initial 

moment of time 0=
0
t  

We integrate the system (22) associated with vector field dtd/  on the domain 

(0,10]∈t  with step 0.1=t∆  using the following initial data ( )0.2=0.5,=
00

pq  

which are in the limit cycle of system (22). Hence we obtain time evolution of 

the solution in the point 0=x : )(0,),(0, tptq . 

At every moment of time ktt =  we integrate system (19) with initial data 

 ( ).)(0,=),(0,=
00 kk tpptqq  

to obtain solutions ),(),,( txvtxu . 

Using relationships (23) we obtain exact solutions of nonlinear dynamical 

system (5) for ),(= txuu  and ),(= txvv  which are given in Figure 3. 
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Fig. 3. Solutions ),(= txuu  and ),(= txvv
 

of the system (5) with 1=1,= −ϑη cc  

6. Finite dimensional reduction on the four-dimensional invariant 

submanifold 

Let us consider the following Lagrange functional 

















+−+−+








+−+∫

+

.
4

1

4

3

4

3

4

1

4

1
:=],[

223

4

222

0

0

4
dxvuuuuvvucuvvucuvcvu xxxx

lx

x

ϑηL   

  (24) 

Similar to the first case, we find invariant submanifold MM ⊂
4

: 

{ }0=],[:),(=
4

4
vugradMvuM L∈  as fixed points of Lagrange functional (24): 

 .

0=
4

1

4

3

2

1

0,=
4

1

2

3

2

1

4

3

4

3

32:),(

=

4

3

4

2

44

22

4

2

4

2

4

4



























−+−−+

−+−++

+−+∈

xx

xxxxxx

ucuvvcucucuc

vcuucuucvc

vucuvcvcMvu

M

ϑϑη

ϑη

 (25) 

Thus, on manifold (25) exists symplectic structure 2211
(2)
= dqdpdqdp ∧+∧ω  

in the following form 

 dvucdduvuucucd
xxxx

∧







+∧








+−+ 44

(2)

4

1
)

4

1

2

3
(

2

1
= ϑω  (26) 

 Canonic Hamiltonian variables },,,{
2211

qpqp  are 

vqucpuqvuucucp
xxxx

=,
4

1
=,=,

4

1

2

3

2

1
= 242141 








+−+ϑ  

on submanifold MM ⊂
4 . 
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Elements },,,,,{
xxxxxx
vuvuvu  can be rewritten on submanifold MM ⊂

4  as 

follows: 

,
4

=,=,=
2

4

21
p

c
uqvqu
x

( ),62
4

= 1242142

4

qpcpcpc
c

v
x

+− ϑ  

( ),3222
2

=
2142

3

14

2

112

4

qqcqcqcqcqc
c

u
xx

+−−+ ϑϑη

( ++−+−+−
24

4

1

2

4

3

14

2

1

22

141

2

22

4

42432824848
1

= qccqcqccqcqccqccp
c

u
xx ηϑϑηϑη

 

)2
2

2

42

2

1

2

42142

2
324164 qcqqcqqccqc ++−+ ϑϑ

 

Hamiltonian functions 
)(

4
x

h  and 
)(

4
t
h  can be obtained by determining 

relationships: ,=
44

)(
4 








+−

xx

x

v
v

u
udx

dh

δ

δ

δ

δ LL

],[

44
)(

4
=

vuK

tt

t

v
v

u
udx

dh








+−
δ

δ

δ

δ LL
 

which have the following form in the canonical coordinates of submanifold MM ⊂
4 :  

 
2
214

2
2

2
3
142

2
121

4

1
2
2

2
4

2
2

4

21)(
4

4

3

4

1244
= qqc

qc
qqcqqcqqc

c

qp

c

pc

c

pp
h x −++−−+−

ϑ
ϑη

ϑ  (27) 
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2

4

2
22

2

184444
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3
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21
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2
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22
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2
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142
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2
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21
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2
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2
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2
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4

21

4

2
1)(

4
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qqc

c

qcqc
qqcqqc

c

qqc
qqc

c

qqcc

c

qp
qcqc

c

qc
qc

c

qcc

c

qc

c

qpc

c

qpp

c

pc

c

pc

c

ppc

c

p
h

t

−+−−+−+

−++−+−+

−−−+++−

ϑ
ϑη

ϑ
ϑ

ϑ

ϑη

ϑ
ϑ

η

ϑη

ηϑϑηϑ

 (28) 

As a result, we have reduced our Boussinesq-Burgers nonlinear dynamical 

system (5) on the constructed four dimensional invariant submanifold MM ⊂
4 . 

The system for the dxd/  is obtained from (27) and provides information for 

initial data for the Cauchy problem 

 








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




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+−++−

,
2

3

2
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,
2484
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,
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3
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4
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,
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21423
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2
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2

4
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2

24

2

2

14212

2

21

4

21

qqcqc
qcqcqc

dx

dp

c

qp

c

pc

c

p

dx

dq

qc
qqcqqcqc

c

p

dx

dp

c

p

dx

dq

ϑ
ϑη

ϑ

ϑη

 (29) 
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The system for the dtd/  is following: 
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c
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c
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c
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dt
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c
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c

pc
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p
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dq

ϑ
ϑη

ϑ
ϑ

η

ϑη

ϑϑηϑ

ϑ
ϑ

ϑ
η

ϑη

ϑ
ϑ

η

ϑηηϑ

ϑ

 (30) 

Theorem 4. Boussinesq-Burgers nonlinear dynamical system (5) reduced on the 

invariant four-dimensional submanifold MM ⊂
4  is exactly equivalent to the set of 

two commuting canonical Hamiltonian flows (29) and (30) that are completely 

integrable by quadratures systems. The corresponding Hamiltonian functions are 

given by expressions (27) аnd (28). 

Conclusions 

Thus, in this paper we present a combined algorithm for finding conservation 

laws and an implectic operator. This method has several advantages: having found 

few conservation laws, we can obtain implectic operators and furthermore construct 

a recursion operator for explicit evaluation of the conservation laws. Moreover, we 

have shown existence of the infinite hierarchy of conservations laws for Boussinesq- 

-Burgers nonlinear dynamical system. Using conservation laws, the finite dimen-

sional reduction on invariant two-dimensional and four-dimensional submanifolds 

has been performed. Initial conditions for periodical solutions for dynamical system 

have been found. 
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