PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical looping combustion related processes using solid oxygen carriers oxidized in CO2 atmosphere

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical-looping combustion (CLC) is an attractive process in CO2 capture, especially when solid oxygen carriers are used in it. The main requirements for oxygen-transporting materials include appropriate oxidation (in air) and reduction (in the presence of fuel) ability. In the paper a conceptual proposition for CLC-related processes with the application of solid oxygen carriers oxidized in both air and CO2 atmosphere has been presented. The possibility of the “looping” process on the same carriers using both CO2 and air atmosphere as an oxidizing agent allows us to enrich the concept of CLC and related processes by proposing a cyclic recirculation of the produced CO2 back to the installation. The oxidizing of solid oxygen carrier in a CO2 atmosphere is accompanied by CO emission from the plant. This toxic gas could be transformed into a useful product in any chemical process. It is possible to combine the looping processes with manufacturing of any appropriate morphological form of carbon in the cyclic CO disproportionation process. The combined process could lead to a lower CO2 emissions to the environment. SrTiO3 doped by Cr (STO:Cr) and a mixture of TiO2- and Ni-based compounds (TiO2-Ni) were investigated as oxygen transporting materials. The experiment methodology based on thermogravimetric, diffraction and spectroscopic studies was shown. Thermogravimetric (TGA) and Powder Diffraction (XRD) measurements were provided in-situ during a few cycles in a reducing (Ar+3 % H2) and oxidizing environment. Moreover, the STO:Cr powders were characterized ex-situ by the X-ray Photoelectron Spectroscopy (XPS) method. It was found that in tested conditions the cyclic process of the investigated powders’ oxidation and reduction is possible. Satisfactory results considering the oxygen transport capacity was obtained for the TiO2-Ni sample.
Rocznik
Strony
579--589
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
  • Łukasiewicz Research Network, Refractory Materials Division, Institute of Ceramics and Building Materials, ul. Toszecka 99, 44-100 Gliwice, Poland
  • The "Edith Stein School with Character" Foundation, ul. Bałtycka 8, 44-100 Gliwice, Poland
autor
  • Łukasiewicz Research Network, Refractory Materials Division, Institute of Ceramics and Building Materials, ul. Toszecka 99, 44-100 Gliwice, Poland
autor
  • Łukasiewicz Research Network, Refractory Materials Division, Institute of Ceramics and Building Materials, ul. Toszecka 99, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network, Refractory Materials Division, Institute of Ceramics and Building Materials, ul. Toszecka 99, 44-100 Gliwice, Poland
autor
  • A. Chełkowski Institute of Physics, University of Silesia, ul. 75. Pułku Piechoty 1, 41-500 Chorzów, Poland
  • Silesian Centre for Education and Interdisciplinary Research, ul. 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Łukasiewicz Research Network, Refractory Materials Division, Institute of Ceramics and Building Materials, ul. Toszecka 99, 44-100 Gliwice, Poland
Bibliografia
  • [1] Kyoto Protocol. United Framework Convention on Climate Change. United Nations, Kyoto 1997. Available from: https://unfccc.int/resource/docs/convkp/kpeng.pdf.
  • [2] Ksepko E, Łabojko G. J Therm Anal Calorim. 2014;117:151-62. DOI: 10.1007/s10973-014-3674-x.
  • [3] Ksepko E, Klimontko J, Kwiecinska A. J Therm Anal Calorim. 2019;138:4247-60. DOI: 10.1007/s10973-019-08214-8.
  • [4] Azimi G, Mattisson T, Leion H, Ryden M, Lyngfelt A. Int J Greenh. 2015;34:12-24. DOI: 10.1016/j.ijggc.2014.12.022.
  • [5] Dennis JS, Müller CR, Scott SA. Fuel. 2010;89:2353-64. DOI: 10.1016/j.fuel.2010.01.037.
  • [6] Adánez J, Abad A, Mendiara T, Gayán P, De Diego LF, García-Labiano F. Prog Energy Combust. 2018; 65:6-66. DOI: 10.1016/j.pecs.2017.07.005.
  • [7] Ksepko E. Int J Hydrogen Energy. 2018;43(20):9622-34. DOI: 10.1016/j.ijhydene.2018.04.046.
  • [8] Dai Z, Viswanathan H, Xiao T, Middleton R, Pan F, Ampomah W, et al. Energy Procedia. 2017;114:6957-67. DOI: 10.1016/j.egypro.2017.08.034.
  • [9] Wang X, van’t Veld K, Marcy P, Huzurbazar S, Alvarado V. Appl Energy. 2018;222:132-47. DOI:10.1016/j.apenergy.2018.03.166.
  • [10] Shabani B, Vilcáez J. Comput Geosci. 2018;111:58-66. DOI: 10.1016/j.cageo.2017.10.012.
  • [11] Ghanbari S, Mackay EJ, Heinemann N, Alcalde J, James A, Allen MJ. Appl Energy. 2020;278:115634. DOI: 10.1016/j.apenergy.2020.115634.
  • [12] Alcántar-Vázquez B, Duan Y, Pfeiffer H. Ind Eng Chem Res. 2016;55(37):9880-6. DOI: 10.1021/acs.iecr.6b02257.
  • [13] Kemache N, Pasquier LC, Cecchi E, Mouedhen I, Blais JF, Mercier G. Fuel Process Technol. 2017;166:209-16. DOI: 10.1016/j.fuproc.2017.06.005.
  • [14] Baena-Moreno FM, Rodríguez-Galán M, Vega F, Alonso-Fariñas B, Vilches Arenas LF, Navarrete B. Energy Source Part A. 2019;41(12):1403-33. DOI: 10.1080/15567036.2018.1548518.
  • [15] Amari D, Lopez Cuesta JM, Nguyen NP, Jerrentrup R, Ginoux JL. J Thermal Analysis. 1992;38:1005-15. DOI: 10.1007/BF01979434.
  • [16] Martavaltzi CS, Lemonidou AA. Micropor Mesopor Mat. 2008;110:119-27. DOI: 10.1016/j.micromeso.2007.10.006.
  • [17] Khedr MH, Bahgat M, Nasr MI, Sedeek EK. Colloids Surf A Physicochem Eng Asp. 2007;302:517-24. DOI: 10.1016/j.colsurfa.2007.03.024.
  • [18] Matsumoto H, Tanabe S, Okitsu K, Hayashi Y, Suib SL. Bull Chem Soc Jpn. 1999;72:2567-71. DOI: 10.1246/bcsj.72.2567.
  • [19] Lin KS, Adhikari AK, Tsai ZY, Chen YP, Chien TT, Tsai HB. Catal Today. 2011;174:88-96. DOI: 10.1016/j.cattod.2011.02.013.
  • [20] Zhang K, Zhang G, Liu X, Phan AN, Luo K. Ind Eng Chem Res. 2017;56:3204-16. DOI: 10.1021/acs.iecr.6b04570.
  • [21] Najera M, Solunke R, Gardnem T, Veser G. Chem Eng Res Des. 2011;89:1533-43. DOI: 10.1016/j.cherd.2010.12.017.
  • [22] Szot K, Keppels J, Speer W, Besocke K, Teske M, Eberhardt W. Surf Sci. 1993;280:179-84. DOI: 10.1016/0039-6028(93)90366-R.
  • [23] Wu XY, Ghoniem AF. Prog Energy Combust Sci. 2019;74:1-30. DOI: 10.1016/j.pecs.2019.04.003.
  • [24] Dharanipragada NA, Meledina M, Galvita VV, Poelman H, Turner S, Van Tendeloo G, et al. Ind Eng Chem Res. 2016;55:5911-22. DOI: 10.1021/acs.iecr.6b00963.
  • [25] Pena MA, Fierro JLG. Chem Rev. 2001;101:1981-2017. DOI: 10.1021/cr980129f.
  • [26] Liu X, Su W, Lu Z, Liu J, Pei L, Liu W, et al. J Alloys Compd. 2000;305:21-3. DOI: 10.1016/S0925-8388(00)00735-0.
  • [27] Biesinger MC, Brown C, Mycroft JR, Davidson RD, McIntyre NS. Surf Interface Anal. 2004;36:1550-63. DOI: 10.1002/sia.1983.
  • [28] Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie Minnesota: Physical Electronics Inc; 1995. ISBN: 096481241X.
  • [29] Chen G, Liu H, He Y, Zhang L, Asghar MI, Geng S, et al. J Mater Chem A. 2019;7:9638-45. DOI: 10.1039/C9TA00499H.
  • [30] Wala T, Psiuk B, Kubacki J, Stec K, Podwórny J. Ceram Int. 2014;40:5129-36. DOI: 10.1016/j.ceramint.2013.10.036.
  • [31] Tsubaki N, Fujimoto K. Fuel Process Technol. 2000;62:173-86. DOI: 10.1016/S0378-3820(99)00122-8.
  • [32] Chen PP, Liu JX, Li WX. ACS Catal. 2019;9:8093-103. DOI: 10.1021/acscatal.9b00649.
  • [33] Göbel C, Schmidt S, Froese C, Fu Q, Chen YT, Pan Q, et al. J Catal. 2020;383:33-41. DOI: 10.1016/j.jcat.2020.01.004.
  • [34] Nikolaev P, Bronikowski MJ, Kelley Bradley R, Rohmund F, Colbert DT, Smith KA, et al. Chem Phys Lett. 1999;313:91-7. DOI: 10.1016/S0009-2614(99)01029-5.
  • [35] Nolan PE, Butler AH, Lynch DG. Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide and the nanoecapsulated and nanotubes formed thereby. 1999. United States patent 5,965,267. Available from: https://www.google.com/patents/US5965267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c344fbb-7173-454b-b897-946b1c93916d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.