PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sustainable optimized LSTM-based intelligent system for air quality prediction in Chennai

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, air quality prediction is the most essential process taken by an Indian government. Due to poor quality of air, unhealthy lifestyle and premature deaths of humans have arisen in India, especially in Delhi. Not only has a human’s health, but the air pollution also made a huge impact on several areas like economy, agriculture and road accidents, etc. In recent times, deep learning (DL) technologies are influenced every application rapidly even in air pollution prediction. In this work, the novel optimised DL algorithms are proposed for the efficient prediction of air quality particularly focussing on Chennai, Tamil Nadu. To provide higher accuracy in air quality prediction, the novel optimised DL algorithms are proposed which is combined several models like ARIMA and CNN-LSTM and Tuna Optimization Algorithm, respectively. Initially, CNN and LSTM are combined to provide hybrid architecture. Next, the metaheuristics-based tuna swarm optimization model is applied for fine-tuning the hyperparameters of the CNN-LSTM model which is known as the Tuna Optimised CNN-LSTM (TOCL) method. Finally, the novel TOCL is applied to the residuals of the ARIMA model to form an ARIMA- TOCL (ARTOCL) model. As a result, the novel ARTOCL is learned and performed with an optimal air quality prediction. The metrics of the Hybrid ARTOCL model are evaluated as a better mean absolute error (MAE), root mean squared error (RMSE), R2 score and the normalized RMSE (nRMSE) with higher accuracy than the previous models. The results show that the proposed prediction model has 22.6% R2 improvement, 14.6% MAE reductions, 22% RMSE reductions and 16.45% nRMSE reductions than the existing models.
Czasopismo
Rocznik
Strony
2889--2899
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Department of Electronics and Instrumentation Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
  • Department of Electronics and Instrumentation Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
  • Department of Electronics and Instrumentation Engineering, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh 517102, India
Bibliografia
  • 1. (2020) 7 Million premature deaths annually linked to air pollution [Online; accessed 22-August-2020]. [Online]. Available: https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
  • 2. Chang YS, Chiao HT, Abimannan S, Huang YP, Tsai YT, Lin KM (2020) An LSTM-based aggregated model for air pollution forecasting. Atmos Pollut Res 11(8):1451–1463. https://doi.org/10.1016/j.apr.2020.05.015
  • 3. Cusworth DH, Mickley LJ, Sulprizio MP, Liu T, Marlier ME, DeFries RS, Guttikunda SK, Gupta P (2018) Quantifying the influence of agricultural fires in northwest india on urban air pollution in Chennai, India. Environ Res Lett 13(4):044018
  • 4. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. Adv Neural Inf Process Syst 29:3844–3852
  • 5. Desa U (2015) United nations department of economic and social a_airs, population division. world population prospects: the 2015 revision, key findings and advance tables in technical report: Working Paper No. ESA/P/WP. p. 241
  • 6. Gilik A, Ogrenci AS, Ozmen A (2021) Air quality prediction using CNN+LSTM-based hybrid deep learning architecture. Environ Sci Pollut Res 29(8):11920–11938. https://doi.org/10.1007/s11356-021-16227-w
  • 7. Gunasekar S, Joselin Retna Kumar G, Pius Agbulu G (2022) Air quality predictions in urban areas using hybrid ARIMA and metaheuristic LSTM. Comput Syst Sci Eng. https://doi.org/10.32604/csse.2022.024303
  • 8. Heydari A, Majidi Nezhad M, Astiaso GD et al (2021) Air pollution forecasting application based on deep learning model and optimization algorithm. Clean Techn Environ Policy. https://doi.org/10.1007/s10098-021-02080-5
  • 9. Huang CJ, Kuo PH (2018) A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities. Sensors 18(7):2220
  • 10. Le VD, Bui TC, Cha SK (2020) Spatiotemporal deep learning model for citywide air pollution interpolation and prediction, IEEE Int Conf Big Data and Smart Computing (Big- Comp), pp. 55–62
  • 11. Liu B, Yan S, Li J, Qu G, Li Y, Lang J, Gu R (2019) A sequence-to-sequence air quality predictor based on the n-step recurrent prediction. IEEE Access 7:43331–43345
  • 12. Liu DR, Lee SJ, Huang Y, Chiu CJ (2020) Air pollution forecasting based on attention-based LSTM neural network and ensemble learning. Exp Syst 37(3):1–16
  • 13. Lu H, Song J, Di T, Kurdestany JM, Wang H (2018) A deep belief network based model for urban haze prediction. Teh Ki Vjesnik 25:519–527
  • 14. Mythili K (2021) A swarm based bi-directional LSTM-enhanced elman recurrent neural network algorithm for better crop yield in precision agriculture. Turk J Comput Math Educ (TURCOMAT) 12(10):7497–7510
  • 15. Roser M, Ritchie H, Ortiz-Ospina E (2013) World population growth. Our World in Data, 2013, https://ourworldindata.org/world-populationgrowth
  • 16. Tao Q, Liu F, Li Y, Sidorov D (2019) Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access 7:76690–76698
  • 17. Wang ZX, Ye DJ (2017) Forecasting chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. J Clean Prod 142:600–612
  • 18. Xie L, Han T, Zhou H, Zhang ZR, Han B, Tang A (2021) Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Comput Intell Neurosci. https://doi.org/10.1155/2021/9210050
  • 19. Yi X, Zhang J, Wang Z, Li T, Zheng Y (2018) Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23, pp. 965–973
  • 20. Yuan X, Chen C, Jiang M, Yuan Y (2019) Prediction interval of wind power using parameter optimized beta distribution based LSTM model. Appl Soft Comput J 82:105550
  • 21. Zeinalnezhad M, Gholamzadeh A, Kleme J (2020) Air pollution prediction using semi-experimental regression model and adaptive neuro-fuzzy inference system. J Clean Prod 261:121218
  • 22. Zhang C, James JQ, Liu Y (2019) Spatial-temporal graph attention networks: a deep learning approach for traffic forecasting. IEEE Access 7:166246–166256
  • 23. Zhang S, Li X, Li Y, Mei J (2018) Prediction of urban PM 2.5 concentration based on wavelet neural network. In: Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11, pp. 5514–5519
  • 24. Zheng Y, Liu F, Hsieh HP (2013) U-air: when urban air quality inference meets big data. 19th International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD), Chicago, USA. pp. 1436–1444
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c33a6cb-6683-401c-8e57-b75387472009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.