PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuel Level Estimation in Tank of Truck in Motion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of a case study on estimating the fuel level in the tank of a motor vehicle. A method based on the concept of particle filtering of noisy measurement data is proposed. The algorithm designed using the Sequential Monte Carlo method with Sequential Importance Sampling is combined with classical digital filters used for signal filtering. In the simulations, real data obtained by measuring fuel levels in the tanks of TIR heavy trucks from one of the Polish trucking companies are used. The performance of the applied method was considered in various measurement situations, such as refueling, driving on an uneven road surface, driving on steep roads, and fading of the measurement signals.
Rocznik
Strony
413--418
Opis fizyczny
Bibliogr. 18 poz., rys., tab., fot.
Twórcy
  • University of Science and Technology, Wrocław
  • University of Science and Technology, Wrocław
Bibliografia
  • [1] Guzzella L, Sciarretta A. ”Vehicle Propulsion Systems,” 1st ed., Springer: Berlin/Heidelberg, Germany, 2007.
  • [2] Ben Dhaou I. ”Fuel estimation model for ECO-driving and ECO-routing.” In: IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011;37-42. [Online]. Available: http://doi.org/10.1109/IVS.2011.5940399
  • [3] Jiménez F, Cabrera-Montiel W. ”System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information.” Energies. 2014; 7(6):3576-3598. [Online]. Available: http://doi.org/10.3390/en7063576
  • [4] Chen Y, Zhu L, Gonder J, Young S, Walkowicz K. ”Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach,” Transp. Res. Part C Emerg. Technol. 2017;83:134-145. [Online]. Available: http://doi.org/10.1016/j.trc.2017.08.003.
  • [5] Kan Z, Tang L, Kwan M, Zhang X. ”Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.” Int. J. Environ. Res., Public Health 2018;15:566. [Online]. Available: http://doi.org/10.3390/ijerph15040566.
  • [6] Gillespie T. ”Fundamentals of Vehicle Dynamics.” 2nd ed., SAE International: Warrendale, PA, USA, 2019.
  • [7] Kancharla SR, Ramadurai G. ”Incorporating driving cycle based fuel consumption estimation in green vehicle routing problems.” Sustainable Cities and Society, 2018;40:214-221. [Online]. Available: http://doi.org/10.1016/j.scs.2018.04.016.
  • [8] Faragher R. ”Understanding the basis of the Kalman filter via i simple and intuitive derivation,” IEEE Signal Processing Magazine, September 2012;29(5):128-132. [Online]. Available: http://doi.org/10.1109/MSP.2012.2203621.
  • [9] Seo J, Yu M, Park Ch, Lee J. ”An Extended Robust H infinity Filter for Nonlinear Uncertain Systems with Constraints.” In: Proc. IEEE Conference on Decision and Control, Seville, Spain, 2005:1935-1940. [Online]. Available: http://doi.org/10.1109/CDC.2005.1582443.
  • [10] Grimble MJ, Sayed AE. ”Solution of the H infinity optimal linear filtering problem for discrete-time systems.” IEEE Trans. on Acoustics Speech and Signal Proc. 1990;38(7):1092-1104. [Online]. Available:http://doi.org/10.1109/29.57538.
  • [11] Lyons R. Understanding Digital Signal Processing. 3rd ed., Publisher: Pearson, 2010.
  • [12] Oppenheim A. ”Digital signal processing,” 3rd ed., Publisher: Pearson, 2008.
  • [13] Najim M. ”Introduction to particle filtering.”, In: Modeling, Estimation and Optimal Filtering in Signal Processing, 1 January 2008. [Online]. Available: https://doi.org/10.1002/9780470611104.ch9.
  • [14] Särkkä S. ”Bayesian Filtering and Smoothing.” Cambridge University Press, 2013.
  • [15] Martino L, Elvira V, Louzada F. ”Weighting a resampled particle in Sequential Monte Carlo.” In: IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 2016;1-5. [Online]. Available: http://doi.org/10.1109/SSP.2016.7551711.
  • [16] Liu Z, Liu W-I, Su G-c, Yang H, Hu G. ”Wind-solar micro grid reliability evaluation based on sequential Monte Carlo.” In: 2016 Int. Conf. Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China, 2016;1-6. [Online]. Available: http://doi.org/10.1109/PMAPS.2016.7764073.
  • [17] Panda J, Kumar Nanda P, Pradhan T. ”Particle Filter-Based Video Object Tracking Scheme With Target Remodeling and Reinitialization and Its Hardware Implementation Using Raspberry Pi.” IEEE Access, 2024;12:98285-98305. [Online]. Available: http://doi.org/10.1109/ACCESS.2024.3428321.
  • [18] Hafez OA, Joerger M, Spenko M. ”How Safe Is Particle Filtering-Based Localization for Mobile Robots? An Integrity Monitoring Approach.” IEEE Trans. Robotics, 2014;40:3372-3387. [Online]. Available: http://doi.org/10.1109/TRO.2024.3420798.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c32b19d-1537-406c-9c08-5864762dddb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.