PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of Alfv´en waves in the solar atmosphere with the PLUTO code

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With an adaptation of the PLUTO code, we present a 2.5-dimensional Cartesian magnetohydrodynamic model with the invariant (∂/∂z = 0) coordinate z of propagating magnetohydrodynamic- gravity waves in the solar atmosphere, permeated by curved magnetic field and constant gravity field g = −gˆy. This code implements second-order accurate Godunov-type numerical scheme and MPI for high level of parallelization. We show that the inhomogeneous grid, originally built in the code, resolves well the system dynamics, resulting from the localized pulse initially launched in the transverse component of velocity Vz. We consider two cases for background magnetic field Be = [Bex,Bey,Bez] with its transverse component: (a) Bez = 0 and (b) Bez 6= 0. In case (a), the initial pulse triggers only Alfv´en waves, described solely by Vz. These waves drive by ponderomotive forces the magnetoacoustic waves, associated with perturbations in Vx and Vy. As a result of Bez 6= 0, in the (b) case, Alfv´en waves are coupled to their magnetoacoustic counterparts and all three velocity components are perturbed. We show that in this case the PLUTO code is accurate, its order being 1.97 and the numerically induced flow is of magnitude ≈ 0.1 km s−1, i.e. by a factor of at least ≈ 103 lower than the characteristic (Alfv´en) speed of the system. The errors, associated with the selenoidal condition, are low with the max |∇ ・ B| ≈ 1.3 ・ 10−10 Tesla km−1. We conclude that the PLUTO code copes well with resolving all spatial and temporal scales that appear in this numerically challenging system.
Słowa kluczowe
EN
Rocznik
Strony
321--335
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Group of Astrophysics, Institute of Physics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin, Poland
autor
  • Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
  • Kiepenheuer-Institut f¨ur Sonnenphysik, Sch¨oneckstr. 6, Freiburg; D–79104 Germany
  • Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
autor
  • Dipartimento di Fisica Generale, Universit`a di Torino, via Pietro Giuria 1, 10125 Torino, Italy
Bibliografia
  • 1. Avrett, E. H., and Loeser, R. (2008) Models of the Solar Chromosphere and Transition Region from SUMER and HRTS Observations: Formation of the Extreme-Ultraviolet Spectrum of Hydrogen, Carbon, and Oxygen. Astrophysical Journal, Supplement 175, 229-276.
  • 2. Banerjee, D., Erd´elyi, R., Oliver, R., and O’Shea, E. (2007) Present and Future Observing Trends in Atmospheric Magnetoseismology. Sol. Phys. 246, 3-29.
  • 3. Chmielewski, P., Murawski, K., Musielak, Z. E., and Srivastava, A. K. (2014) Numerical simulation of impulsively generated Alfv´en waves in solar magnetic arcades. Astrophysical Journal, Supplement, submitted.
  • 4. Chmielewski, P., Srivastava, A. K., Murawski, K., and Musielak, Z. E. (2013) Pulse-driven non linear Alfv´en waves and their role in the spectral line broadening. Monthly Notices of the Royal Astronomical Society 428, 40-49.
  • 5. De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., and Nagata, S. (2007) Chromospheric Alfv´enic Waves Strong Enough to Power the Solar Wind. Science 318, 1574.
  • 6. Fedun, V., Verth, G., Jess, D. B., and Erd´elyi, R. (2011) Frequency Filtering of Torsional Alfv´en Waves by Chromospheric Magnetic Field. Astrophysical Journal, Letters 740, L46.
  • 7. Gruszecki, M., Murawski, K., Solanki, S. K., and Ofman, L. (2007)
  • 8. Attenuation of Alfv´en waves in straight and curved coronal slabs. Astronomy and Astrophysics 469, 1117-1121.
  • 9. Konkol, P., Murawski, K., and Zaqarashvili, T. V. (2012) Numerical simulations of magnetoacoustic oscillations in a gravitationally stratified solar corona. Astronomy and Astrophysics 537, A96.
  • 10. Kudoh, T., and Shibata, K. (1999) Alfv´en Wave Model of Spicules and Coronal Heating. Astrophysical Journal 514, 493-505. Matsumoto, T., and Shibata, K. (2010) Nonlinear Propagation of Alfv´en Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation. Astrophysical Journal 710, 1857-1867.
  • 11. Matsumoto, T., and Suzuki, T. K. (2012) Connecting the Sun and the Solar Wind: The First 2.5 dimensional Self-consistent MHD Simulation under the Alfv´en Wave Scenario. Astrophysical Journal 749, 8.
  • 12. Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., and Ferrari, A. (2007) PLUTO: a Numerical Code for Computational Astrophysics. Astrophysical Journal, Suplement Series 170, 1, 228– 234.
  • 13. Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P., and Bodo, G. (2012) The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics. Astrophysical Journal, Supplement 198, 7.
  • 14. Murawski, K. (1992) Alfven-magnetosonic waves interaction in the solar corona. Sol. Phys. 139, 279-297.
  • 15. Murawski, K. (2002) Analytical and numerical methods for wave propagation in fluid media. World Scientific 175, 645.
  • 16. Murawski, K., and Musielak, Z. E. (2010) Linear Alfv´en waves in the solar atmosphere. Astronomy and Astrophysics 518, A37.
  • 17. Nakariakov, V. M., Roberts, B., and Murawski, K. (1997) Alfven Wave Phase Mixing as a Source of Fast Magnetosonic Waves. Sol. Phys. 175, 93- 105.
  • 18. Nakariakov, V. M., Roberts, B., and Murawski, K. (1998) Nonlinear coupling of MHD waves in inhomogeneous steady flows. Astronomy and Astrophysics 332, 795-804.
  • 19. Ofman, L. (2010) Wave Modeling of the Solar Wind. Living Reviews in Solar Physics 7, 4.
  • 20. Suzuki, T. K. (2007) Self-Consistent MHD Modeling of Solar Wind. New Solar Physics with Solar-B Mission 369 of Astronomical Society of the Pacific Conference Series, 557.
  • 21. Suzuki, T. K., and Inutsuka, S.-I. (2006) Solar winds driven by nonlinear low-frequency Alfv´en waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. Journal of Geophysical Research (Space Physics) 111, 6101.
  • 22. Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., and Edmondson, J. (2007) Alfv´en Waves in the Solar Corona. Science 317, 1192.
  • 23. Vigeesh, G., Fedun, V., Hasan, S. S., and Erd´elyi, R. (2012) Threedimensional Simulations ofMagnetohydrodynamicWaves inMagnetized Solar Atmosphere. Astrophysical Journal 755, 18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c30aa3d-cb7e-46a5-a02e-8dd95aa8b884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.