Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Automated segmentation of optic disc in fundus images plays a vital role in computer aided diagnosis (CAD) of eye pathologies. In this paper, a novel method is proposed which detects and excludes the blood vessel for accurate optic disc segmentation. This is achieved in two steps. First, an effective blood vessel detection and exclusion algorithm is developed using directional filter. In the second step, a decision tree classifier is used to obtain an adaptive threshold in order to detect the contour of optic disc. The proposed method aids in computationally robust segmentation of optic disc even in fundus images having illuminations, reflections and exudates. The proposed method is tested on two different datasets which includes 300 fundus images collected from Kasturba Medical College (KMC) Manipal and also the publically available RIM-ONE database. The average values of Jaccard index, dice coefficient, sensitivity, specificity and accuracy obtained for KMC images is 91.28 %, 94.17 %, 92.71 %, 99.89 % and 99.61 % respectively. For RIM-ONE database the obtained average values of Jaccard index, dice coefficient, sensitivity, specificity and accuracy are 85.30 %, 90.69 %, 93.90 %, 99.39 % and 99.15 % respectively. The obtained segmentation results proves the efficiency of the algorithm to be incorporated in CAD of eye diseases.
Wydawca
Czasopismo
Rocznik
Tom
Strony
52--64
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
autor
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
autor
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
autor
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
autor
- Dept. of Ophthalmology, Kasturba Medical College (KMC), Manipal Academy of Higher Education, Manipal, Karnataka, India
Bibliografia
- [1] Indiana retina. Available from https://www.indianaretina. com/diseases-of-the-eye.
- [2] Singh NP, Srivastava R. Segmentation of retinal blood vessels by using a matched filter based on second derivative of Gaussian. Int J Biomed Eng Technol 2016;21 (3):229. 2016.
- [3] Morales S, Naranjo V, Angulo J, Alcañiz M. Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imaging 2013;32(4):786–96.
- [4] Cheng SC, Huang YM. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans Inf Technol Biomed 2003;7(no. 3):163–70.
- [5] Rodrigues LC, Marengoni M. Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 2017;36:39–49.
- [6] Bharkad S. Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 2017;31:483–98.
- [7] Nayak J, Acharya R, Bhat PS, Shetty N, Lim TC. Automated diagnosis of Glaucoma Using digital fundus images. J Med Syst 2008;33(September (5)):337–46.
- [8] Issac A, Sarathi MP, Dutta MK. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput Methods Programs Biomed 2015;122(2):229–44.
- [9] Aquino A, Gegúndez-Arias ME, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 2010;29(11):1860–9.
- [10] Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, Marinho DR. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 2010;40(2):124–37.
- [11] Muramatsu C, Nakagawa T, Sawada A, Hatanaka Y, Hara T, Yamamoto T, et al. Automated segmentation of optic disc region on retinal fundus photographs: comparison of contour modeling and pixel classification methods. Comput Methods Programs Biomed 2011;101:23–32.
- [12] Mittapalli PS, Kande GB. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control 2016;24:34–46.
- [13] Mookiah MRK, Acharya UR, Chua CK, Min LC, Ng EYK, Mushrif MM, et al. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. Proc Inst Mech Eng H 2012;227(1):37–49.
- [14] Joshi GD, Sivaswamy J, Krishnadas SR. Optic disk and cup segmentation from monocular color retinal images for Glaucoma assessment. IEEE Trans Med Imaging 2011;30 (6):1192–205.
- [15] Yu H, Barriga ES, Agurto C, Echegaray S, Pattichis MS, Bauman W, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed 2012;16(4):644–57.
- [16] Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 2017;55:28–41. 2017.
- [17] Al-Bander B, Al-Nuaimy W, Williams BM, Zheng Y. Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed Signal Process Control 2018;40:91–101.
- [18] Zhang D, Zhao Y. Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform 2016;20(1):333–42.
- [19] Li A, Niu Z, Cheng J, Yin F, Wong DWK, Yan S, et al. Learning supervised descent directions for optic disc segmentation. Neurocomputing 2018;275:350–7.
- [20] Sarathi MP, Dutta MK, Singh A, Travieso CM. Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed Signal Process Control 2016;25:108–17.
- [21] Xiong L, Li H. An approach to locate optic disc in retinal images with pathological changes. Comput Med Imaging Graph 2016;47:40–50.
- [22] Mendonça AM, Sousa A, Mendonça L, Campilho A. Automatic localization of the optic disc by combining vascular and intensity information. Comput Med Imaging Graph 2013;37(5-6):409–17.
- [23] Zou B, Chen C, Zhu C, Duan X, Chen Z. Classified optic disc localization algorithm based on verification model. Comput Graph 2018;70:281–7.
- [24] Roychowdhury S, Koozekanani DD, Kuchinka SN, Parhi KK. Optic disc boundary and vessel origin segmentation of fundus images. IEEE J Biomed Health Inform 2016;20 (6):1562–74.
- [25] Miri MS, Abràmoff MD, Lee K, Niemeijer M, Wang JK, Kwon YH, et al. Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach. IEEE Trans Med Imaging 2015;34(9):1854–66.
- [26] Dua S, Acharya UR, Chowriappa P, Sree SV. Wavelet-based energy features for glaucomatous image classification. IEEE Trans Inf Technol Biomed 2012;16(1):80–7.
- [27] Youssif AAHAR, Ghalwash AZ, Ghoneim AASAR. Optic disc detection from normalized digital fundus images by means of a vessels direction matched filter. IEEE Trans Med Imaging 2008;27(1):11–8.
- [28] Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE. An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control 2015;18:19–29.
- [29] Haleem MS, Han L, van Hemert J, Li B, Fleming A, Pasquale LR, et al. A novel adaptive deformable model for automated optic disc and cup segmentation to aid Glaucoma diagnosis. J Med Syst 2017;42(July (1)).
- [30] Mohamed NA, Zulkifley MA, Hussain A. On analyzing various density functions of local binary patterns for optic disc segmentation. 2015 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE) 2015.
- [31] Sarkar D, Das S. Automated glaucoma detection of medical image using biogeography based optimization. Springer Proceedings in Physics Advances in Optical Science and Engineering 2017;381–8.
- [32] Kothari CR. Research methodology: methods and techniques. New Delhi: New Age International Limited, Publishers; 2009.
- [33] Thakur N, Juneja M. Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control 2018;42:162–89.
- [34] Nergiz M, Akin M, Yildiz A, Takes Ö. Automated fuzzy optic disc detection algorithm using branching of vessels and color properties in fundus images. Biocybern Biomed Eng 2018;38(4):850–67.
- [35] Jiang Z, Yepez J, An S, Ko S. Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 2017;37 (3):412–21.
- [36] Kausu TR, Gopi VP, Wahid KA, Doma W, Niwas SI. Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images. Biocybern Biomed Eng 2018;38(2):329–41.
- [37] Soorya M, Issac A, Dutta MK. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. Int J Med Inform 2018;110:52–70.
- [38] Jiang Z, Yepez J, An S, Ko S. Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 2017;37 (3):412–21.
- [39] Schoonjans F, Zalata A, Depuydt C, Comhaire F. MedCalc: a new computer program formedical statistics. Comp Method Prog Biomed 1995;48(3):257–62.
- [40] Fumero F, Sigut J, Alayon S, Gonzalez-Hernandez M, Gonzalez M. Interactive tool and database for optic disc and cup segmentation of stereo and monocular retinal fundus images. Short Papers Proceedings–WSCG 2015;91–7.
- [41] Uribe Valencia LJ, Martínez Carballido JF. Automated Optic Disc region location from fundus images: using local multi-level thresholding, best channel selection, and an Intensity Profile Model. Biomed Signal Process Control 2019;51:148–61.
- [42] Jaikla C, Rasmequan S. Segmentation of optic disc and cup in fundus images using maximally stable extremal regions 2018 International Workshop on Advanced Image Technology (IWAIT) IEEE 2018;1–4.
- [43] Zhou W, Wu H, Wu C, Yu X, Yi Y. Automatic optic disc detection in color retinal images by local feature spectrum analysis. Comput Math Methods Med 2018;2018:1–12.
- [44] Nergiz M, Akin M, Yildiz A, Takes Ö. Automated fuzzy optic disc detection algorithm using branching of vessels and color properties in fundus images. Biocybern Biomed Eng 2018;38(4):850–67.
- [45] Elbalaoui A, Ouadid Y, Merbouha A. Segmentation of optic disc in fundus images using an active contour. J Electr Commerce Organ (JECO) 2018;16(1):97–111.
- [46] Xue LY, Lin JW, Cao XR, Zheng SH, Yu L. Optic disk detection and segmentation for retinal images using saliency model based on clustering. J Comput (Taipei) 2018;29(5):66–79.
- [47] Rust C, Häger S, Traulsen N, Modersitzki J. A robust algorithm for optic disc segmentation and fovea detection in retinal fundus images. Curr Dir Biomed Eng 2017;3 (2):533–7.
- [48] Chakravarty A, Sivaswamy J. Joint optic disc and cup boundary extraction from monocular fundus images. Comput Methods Programs Biomed 2017;147:51–61.
- [49] Panda R, Puhan NB, Panda G. Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybern Biomed Eng 2017;37(3):466–76.
- [50] Akyol K, Sen B, Bayir S. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. Comput Math Methods Med 2016.
- [51] Giachetti A, Ballerini L, Trucco E. Accurate and reliable segmentation of the optic disc in digital fundus images. J Med Imaging 2014;1(2).
- [52] Salazar Gonzalez A, Kaba D, Li Y, Liu X. Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Health Inform 2017;18(6):1874–86.
- [53] Sevastopolsky A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognit Image Anal 2017;27(3):618–24.
- [54] Quigley HA, Brown AE, Morrison JD, Drance SM. The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 1990;108(1):51–7.
- [55] Li A, Niu Z, Cheng J, Yin F, Wong DWK, Yan S, et al. Learning supervised descent directions for optic disc segmentation. Neurocomputing 2018;275:350–7.
- [56] Thakur N, Juneja M. Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Syst Appl 2019;127:308–22.
- [57] Al-Bander B, Williams B, Al-Nuaimy W, Al-Taee M, Pratt H, Zheng Y. Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 2018;10(4):87.
- [58] Esedoglu S, Shen J. Digital inpainting based on the Mumford–Shah–Euler image model. Eur J Appl Math 2002;13 (04).
- [59] Mienye I, Sun Y, Wang Z. Prediction performance of improved decision tree-based algorithms: a review. Procedia Manuf 2019;35:698–703.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c2a418b-298d-4b09-b52a-e1f1b9f98e1f