Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article is divided into four chapters: Introduction, Materials and Methods, Results, and Conclusions. It explores the potential for determining unconfined compressive strength (RC) using porosity and the cementation index (n/Ci) as an alternative to the water-to-cement ratio (w/c) in surface stabilized soils. The study investigates three stabilized soil mixtures with cement contents of 3%, 5%, and 7%, each tested at moisture levels ranging from 6% to 11%. A comparison between the n/Ci and w/c indicators is presented, along with the calibration process for the n/Ci indicator. Furthermore, a detailed methodology for determining the n/Ci indicator is provided. The article also examines correlations between RC and the secant modulus of elasticity (E50). The findings contribute to the development of efficient methods for assessing the mechanical properties of surface-stabilized soils and demonstrate the practical application of the n/Ci indicator.
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
autor
- Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
Bibliografia
- 1. ACI Committee 230: State-of-the-Art Report on Soil Cement. ACI Materials Journal. 87, 4, (1990). https://doi.org/10.14359/2140.
- 2. Afrin, H.: A Review on Different Types Soil Stabilization Techniques. IJTET. 3, 2, 19 (2017). https://doi.org/10.11648/j.ijtet.20170302.12.
- 3. Brand, A.S. et al.: Stabilization of a Clayey Soil with Ladle Metallurgy Furnace Slag Fines. Materials. 13, 19, 4251 (2020). https://doi.org/10.3390/ma13194251.
- 4. Consoli, N.C. et al.: Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles and Geomembranes. 28, 4, 344–351 (2010). https://doi.org/10.1016/j.geotexmem.2010.01.005.
- 5. Consoli, N.C. et al.: Key Parameters for Strength Control of Artificially Cemented Soils. J. Geotech. Geoenviron. Eng. 133, 2, 197–205 (2007). https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
- 6. Croft, J.B.: The Influence of Soil Mineralogical Composition on Cement Stabilization. Géotechnique. 17, 2, 119–135 (1967). https://doi.org/10.1680/geot.1967.17.2.119.
- 7. Edil, T.B. et al.: Stabilizing Soft Fine-Grained Soils with Fly Ash. J. Mater. Civ. Eng. 18, 2, 283–294 (2006). https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(283).
- 8. Firoozi, A.A. et al.: Fundamentals of soil stabilization. Geo-Engineering. 8, 1, 26 (2017). https://doi.org/10.1186/s40703-017-0064-9.
- 9. Fondjo, A.A. et al.: Stabilization of Expansive Soils Using Mechanical and Chemical Methods: A Comprehensive Review. cea. 9, 5, 1295–1308 (2021). https://doi.org/10.13189/cea.2021.090503.
- 10. Horpibulsuk, S. et al.: Clay–Water∕Cement Ratio Identity for Cement Admixed Soft Clays. J. Geotech. Geoenviron. Eng. 131, 2, 187–192 (2005). https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(187).
- 11. Hossain, Md.U. et al. Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environment International. 145, 106139 (2020). https://doi.org/10.1016/j.envint.2020.106139.
- 12. Kim, Y. et al.: Stabilization of a residual granitic soil using various new green binders. Construction and Building Materials. 223, 724–735 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.019.
- 13. Nelson, J.D., Miller, D.J.: Expansive soils: problems and practice in foundation and pavement engineering. J. Wiley, New York (1992).
- 14. Patel, A.: Soil stabilization. In: Geotechnical Investigations and Improvement of Ground Conditions. pp. 19–27 Elsevier (2019). https://doi.org/10.1016/B978-0-12-817048-9.00003-2.
- 15. Román Martínez, C. et al.: Strength, Stiffness, and Microstructure of Stabilized Marine Clay-Crushed Limestone Waste Blends: Insight on Characterization through Porosity-to-Cement Index. Materials. 16, 14, 4983 (2023). https://doi.org/10.3390/ma16144983.
- 16. Schneider, M.: The cement industry on the way to a low-carbon future. Cement and Concrete Research. 124, 105792 (2019). https://doi.org/10.1016/j.cemconres.2019.105792.
- 17. Sharma, A.K., Sivapullaiah, P.V.: Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils and Foundations. 56, 2, 205–212 (2016). https://doi.org/10.1016/j.sandf.2016.02.004.
- 18. Tran, T.Q. et al.: Feasibility of Reusing Marine Dredged Clay Stabilized by a Combination of By-Products in Coastal Road Construction. Transportation Research Record. 2673, 12, 519–528 (2019). https://doi.org/10.1177/0361198119868196.
- 19. Williamson, S., Cortes, D.D.: Dimensional analysis of soil–cement mixture performance. Géotechnique Letters. 4, 1, 33–38 (2014). https://doi.org/10.1680/geolett.13.00082.
- 20. Yao, K. et al.: Generalized hyperbolic formula capturing curing period effect on strength and stiffness of cemented clay. Construction and Building Materials. 199, 63–71 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c253830-4805-4904-8d78-e8d523124de4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.