PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter identification of PMSM based on dung beetle optimization algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a creative dung beetle optimization (CDBO) algorithm is proposed and applied to the offline parameter identification of permanent magnet synchronous motors. First, in order to uniformly initialize the population state and increase the population diversity, a strategy to improve the initialization of the dung beetle population using Singer chaotic mapping is proposed to improve the global search performance; second, in order to improve the local search performance and enhance the convergence accuracy of the algorithm, a new dung beetle position update strategy is designed to increase the spatial search range of the algorithm. Simulation results show that the proposed optimization algorithm can quickly and accurately identify parameters such as resistance, inductance, and magnetic chain of the PMSM, with significant improvements in convergence algebra, identification accuracy and stability.
Rocznik
Strony
1055--1072
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
  • School of Electrical and Information Engineer, Zhengzhou University of Light Industry Zhengzhou, China
  • Henan Key Lab of Information based Electrical Appliances Zhengzhou, China
autor
  • School of Electrical and Information Engineer, Zhengzhou University of Light Industry Zhengzhou, China
  • Henan Key Lab of Information based Electrical Appliances Zhengzhou, China
autor
  • China Railway Engineering Equipment Group Co. Ltd Zhengzhou, China
autor
  • China Railway Engineering Equipment Group Co. Ltd Zhengzhou, China
autor
  • China Railway Engineering Equipment Group Co. Ltd Zhengzhou, China
autor
  • School of Electrical and Electronic Engineering, Zhengzhou University of Science and Technology Zhengzhou, China
autor
  • School of Electrical and Information Engineer, Zhengzhou University of Light Industry Zhengzhou, China
  • Henan Key Lab of Information based Electrical Appliances Zhengzhou, China
Bibliografia
  • [1] Krzysztofiak M., Zawilak T., Tarchala G., Online control signal-based diagnosis of interturn short circuits of PMSM drive, Archives of Electrical Engineering, vol. 72, no. 1, pp. 67–69 (2023), DOI: 10.1515/aee-2015-0007.
  • [2] An Q., Li S., On-line parameter identification for vector controlled PMSM drives using adaptive algorithm, Vehicle Power & Propulsion Conference, Harbin, China, pp. 1–6 (2008).
  • [3] Underwood S.J., Husain I., Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines, IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2435–2443 (2010), DOI: 10.1109/TIE.2009.2036029.
  • [4] Fan S., Luo W., Zou J., A hybrid speed sensorless control strategy for PMSM Based on MRAS and Fuzzy Control, Power Electronics & Motion Control Conference, Harbin, China, pp. 2976–2980 (2012).
  • [5] Wang S., Liu M., Shi S., Yang G., Identification of PMSM based on EKF and Elman neural network,2009 IEEE International Conference on Automation and Logistics, Shenyang, China, pp. 1459–1463 (2009).
  • [6] Jing C., Yan Y., Lin S., A Novel Moment of Inertia Identification Strategy for Permanent Magnet Motor System Based on Integral Chain Differentiator and Kalman Filter, Energies, vol. 14, no. 2, pp. 235–246 (2020), DOI: 10.3390/en14010166.
  • [7] Liu Y., Zhao J., Wang Q., An off-line parameter identification method for indirect vector con- trolled induction motor drive, Transactions on Power Systems, vol. 23, no. 7, pp. 21–26 (2008), DOI: 10.3321/j.issn:1000-6753.2008.07.004.
  • [8] Li K., Liu L., Zhai J., The improved grey model based on particle swarm optimization algorithm for time series prediction, Engineering Applications of Artificial Intelligence, vol. 55, no. 3, pp. 285–291 (2016), DOI: 10.1016/j.engappai.2016.07.005.
  • [9] Fu X., Gu H., Chen G., Permanent Magnet Synchronous Motors Parameters Identification Based on Cauchy Mutation Particle Swarm Optimization, Transactions of China Electrotechnical Society, vol. 29, no. 5, pp. 127–131 (2014), DOI: 10.3969/j.issn.1000-6753.2014.05.016.
  • [10] Cao Y., Mao R., Feng L., Multi-parameter identification of permanent magnet synchronous motor based on improved sparrow search algorithm, Advanced Technology of Electrical Engineering and Energy, vol. 41, no. 5, pp. 26–34 (2022), DOI: 10.3969/j.issn.1000-1158.2017.05.24.
  • [11] Zhang L., Zhang P., Liu Y., Parameter Identification of Permanent Magnet Synchronous Motor Based on Variable Step-Size Adaline Neural Network, Transactions on Power Systems, vol. 33, no. S2, pp. 377–384 (2018), DOI: 10.19595/j.cnki.1000-6753.tces.L80266.
  • [12] Rahimi A., Bavafa F., Aghababaei S., The online parameter identification of chaotic behaviour in permanent magnet synchronous motor by Self-Adaptive Learning Bat-inspired algorithm, International Journal of Electrical Power & Energy Systems, vol. 78, pp. 285–291 (2016), DOI: 10.1016/j.ijepes. 2015.11.084.
  • [13] Li P., Ding Q., OSTU segmentation algorithm based on sparrow algorithm optimization, Electronic Measurement Technology, vol. 44, no. 19, pp. 148–154 (2021), DOI: 10.19651/j.cnki.emt.2107707.
  • [14] Lin Z., Liu Y., Dispersed chaotic swarm oscillation algorithm merged with spiral strategy, Appli- cation Research of Computers, vol. 38, no. 10, pp. 3060–3071 (2021), DOI: 10.19734/j.issn.1001-3695.2021.03.0086.
  • [15] Wu Z., Song F., Whale optimization algorithm based on improved spiral update position model, Systems Engineering – Theory & Practice, vol. 39, no. 11, pp. 2928–3944 (2019), DOI: 10.12011/1000-6788-2018-2156-17.
  • [16] Ji P., Chen F., Xu T., Huo Y., Qi Q., Qpso-svm algorithm optimized based on Levy flight strategy fusion and adaptive variation factor, Journal of Yunnan Minzu University, vol. 1, no. 8 (2023), DOI: 53.1192.N.20230310.1023.006.
  • [17] Cui M., Jin Q., Grey Wolf Optimization Algorithm Based on Levy Flight Strategy, Computer & Digital Engineering, vol. 50, no. 5, pp. 948–958 (2022), DOI: 10.3969/j.issn.1672-9722.2022.05.006.
  • [18] Aydodu I., Akn A., Saka M.P., Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution, Advances in Engineering Software, vol. 92, pp. 1–14 (2016), DOI: 10.1016/j.advengsoft.2015.10.013.
  • [19] Kamaruzaman A.F., Zain A.M., Yusuf S.M., Levy Flight Algorithm for Optimization Problems – A Literature Review, Applied Mechanics & Materials, vol. 421, pp. 496–501 (2013), DOI: 10.4028/www.scientific.net/AMM.421.496.
  • [20] Xue J., Shen B., Dung beetle optimizer: a new meta-heuristic algorithm for global optimization, The Journal of Supercomputing, vol. 79, no. 7, pp. 7305–7336 (2022), DOI: 10.1007/s11227-022-04959-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c21be11-9384-41c8-b64f-ddf54b644ef4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.