PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MinPlotX: A powerful tool for formula recalculation, visualization, and comparison of large mineral compositional datasets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MinPlotX is an open-source software for mineral formula recalculation and compositional plotting providing an easy-to-use stand-alone graphical user interface (GUI) as well as an advanced programming interface (API). The aim of MinPlotX is to provide publication-ready tables of mineral formulae and plots of mineral composition. The new GUI-based approach allows for a wider variety of calculation and plotting options, including both commonly used pre-defined mineral specific diagrams and a large variety of multi-dimensional diagrams that can be created quickly and easily by the user. The most powerful feature is the addition of nearly any kind of numerical or categorized metadata, such as sample name, analysis location, trace element concentration, age, and others, that can be used to subdivide or contour data. The modular nature of the program makes it possible to add new mineral formula recalculation and plotting routines, as well as other data science tools, without changing the overall structure of the program. Therefore, MinPlotX provides advanced users the means to add new routines and interact with the program through the API, while simultaneously providing a simple and effective platform for users who have no programming experience or do not have access to MATLAB®.
Czasopismo
Rocznik
Strony
13--22
Opis fizyczny
Bibliogr. [37] poz., rys., wykr.
Twórcy
  • INAWI Graz Geozentrum, University of Graz, Graz, Austria 8010
  • Institute of Geological Sciences, University of Bern, Bern, Switzerland 3012
autor
  • Institute of Geological Sciences, University of Bern, Bern, Switzerland 3012
Bibliografia
  • Berman, R.G. (1990). Mixing properties of Ca-Mg-Fe-Mn garnets. American Mineralogist, 75, 328-344.
  • Boschetti, C., Gratuze, B., Schibille, N. (2022). Garnet trade in Early Medieval Europe: The Italian Network. European Journal of Archeology, 26, 101–119. DOI: 10.1017/ eaa.2022.25.
  • Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J.A., Zhang, S., Boujibar, A., Bullock, E.S., Walter, M.J., Lehnert, K., Spear, F., Morrison, S.M., & Hazen, R.M. (2023). The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis. Earth System Data Science, 15, 4235–4259. DOI: 10.5194/essd-15-4235-2023.
  • Corfu, F. (1996). Multistage zircon and titanite growth and inheritance in an Archean gneiss complex, Winnipeg River subprovince, Ontario. Earth and Planetary Science Letters, 141, 175–186. DOI: 10.1016/0012- 821X(96)00064-7
  • Castelli, D., & Rubatto, D. (2002). Stability of Al- and F-rich titanite in metacarbonate: Petrologic and isotopic constraints from a polymetamorphic eclogite marble of the internal Sesia zone (Western Alps). Contributions to Mineralogy and Petrology, 142, 627–639. DOI: 10.1007/s00410-001-0317-6
  • Dubacq, B., & Forshaw, J.B. (2024). The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models. European Journal of Mineralogy, 36, 657–685. DOI: 10.5194/ ejm-36-657-2024.
  • Dutrow, B.L., McMillan, N.J., & Henry, D.J. (2024). A multivariate statistical approach for mineral geographic provenance determination using laser-induced breakdown spectroscopy and electron microprobe chemical data: A case study of copper-bearing tourmalines. American Mineralogist, 109, 1085–1095. DOI: 10.2138/am2023-9164.
  • Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A., & Sklute, E.C. (2006). Mössbauer spectroscopy of Earth and planetary materials. Annual reviews in Earth and Planetary Science, 34, 83–125. DOI: 10.1146/annurev. earth.34.031405.125049
  • Ferry, J.M., & Spear, F.S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66, 113-117. DOI: 10.1007/BF00372150.
  • Forshaw, J.B., & Pattison, D.R.M. (2021). Ferrous/ferric (Fe2+/ Fe3+) partitioning among silicates in metapelites. Contributions to Mineralogy and Petrology, 176, 63. DOI: 10.1007/s00410-021-01814-4.
  • Franz, G, & Spear, F.S. (1985). Aluminous titanite (sphene) from the eclogite zone, south-central Tauern Window, Austria. Chemical Geology, 50, 33–46. DOI: 10.1016/0009-2541(85)90110-X
  • Gies, N.B., Lanari, P., & Hermann, J. (2024). A workflow and software solution for spatially resolved spectroscopic and numerical data (SpecXY). Computers & Geosciences, 105626. DOI: 10.1016/j.cageo.2024.105626
  • Garber, J. M., Hacker, B. R., Kylander-Clark, A. R. C., Stearns, M., & Seward, G. (2017). Controls on trace element uptake in metamorphic titanite: Implications for petrochronology. Journal of Petrology, 58, 1031–1057. DOI: 10.1093/petrology/egx046
  • Gordon, S. M., Kirkland, C. L., Reddy, S. M., Blatchford, H. J., Whitney, D. L., Teyssier, C., Evans, N. J., & McDonald, B. J. (2021). Deformation-enhanced recrystallization of titanite drives decoupling between U-Pb and trace elements. Earth and Planetary Science Letters, 560, 116810. DOI: 10.1016/j.epsl.2021.116810
  • Groat, L.A., Giuliani, G., Stone-Sundberg, J., Sun, Z., Renfro, N.D., & Palke, A.C. (2019). A review of analytical methods used in geographic origin determination of gemstones. Gems & Gemology, 55, 512–535. DOI: 10.5741/GEMS.55.4.512.
  • Hayden, L. A., Watson, E. B., & Wark, D. A. (2008). A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155, 529–540. DOI: 10.1007/s00410-007-0256-y
  • Hodges, K.V., & Crowley, P.D. (1985). Error estimation and empirical geothermobarometry for pelitic systems. American Mineralogist, 70, 702–709.
  • Höfer, H.E., & Brey, G.P. (2007). The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major element analysis. American Mineralogist, 92, 873–885. DOI: 10.2138/am.2007.2390
  • Hoisch, T.D. (1990). Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contributions to Mineralogy and Petrology, 104, 225-234. DOI: 10.1007/BF00306445.
  • Holder, R. M., & Hacker, B. R. (2019). Fluid-driven resetting of titanite following ultrahigh-temperature metamorphism in southern Madagascar. Chemical Geology, 504, 38–52. DOI: 10.1016/j. chemgeo.2018.11.017 Kohn, M. J. (2017). Titanite petrochronology. Reviews in Mineralogy & Geochemistry, 83, 419–441. DOI: 10.2138/rmg.2017.83.13
  • Kohn, M. J., & Corrie, S. L. (2011). Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite: Evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters, 311, 136– 143. DOI: 10.1016/j.epsl.2011.09.008
  • Kohn, M.J., & Spear, F.S. (2000). Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology, 28, 1127. DOI: 10.1130/0091-7613(2000) 282.0.CO;2.
  • Papapavlou, K., Darling, J. R., Moser, D. E., Barker, I. R., EIMF, White, L. F., Lightfoot, P. C., Storey, C. D., & Dunlop, J. (2018). U-Pb isotopic dating of titanite microstructures: Potential implications for the chronology and identification of large impact structures. Contributions to Mineralogy and Petrology, 173, 1–15. DOI: 10.1007/ s00410-018-1511-0
  • Papapavlou, K., Darling, J. R., Storey, C. D., Lightfoot, P. C., Moser, D. E., & Lasalle, S. (2017). Dating shear zones with plastically deformed titanite: New insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada). Precambrian Research, 291, 220–235. DOI: 10.1016/j.precamres.2017.01.007
  • Powell, R., & Holland, T.J.B. (2008). On thermobarometry. Journal of Metamorphic Geology, 26, 155–179. DOI: 10.1111/j.1525-1314.2007.00756.x
  • Ribbe, P.H. (1980). Titanite. Reviews in Mineralogy and Geochemistry, 5, 137–154. DOI: 10.1515/9781501508622-010
  • Scibiorski, E.A., & Cawood, P.A. (2021). Titanite as a petrogenetic indicator. Terra Nova, 34, 177–183. DOI: 10.1111/ter.12574.
  • Schertl, H.-P., Maresch, W.V., Knippenberg, S., Hertwig, A., Belando, A.F., Ramos. R.R., Speich, L., Hofman, C.L. (2018). Petrography, mineralogy and geochemistry of jadeite-rich artefacts from the Playa Grande excavation site, northern Hispaniola: evaluation of local provenance from the Río San Juan Complex. Geological Society, London, Special Publications, 474, 231–253. DOI: 10.1144/SP474.3.
  • Schönig, J., von Eynatten, H., Tolosana-Delgado, R., & Meinhold, G. (2021). Garnet major-element composition as an indicator of host-rock type: a machine learning approach using the random forest classifier. Contributions to Mineralogy and Petrology, 176, 98. DOI: 10.1007/s00410-021-01854-w.
  • Suggate, S.M., & Hall, R. (2013). Using detrital garnet compositions to determine provenance: a new compositional database and procedure. Geological Society, London, Special Publications, 386, 373–393. DOI: 10.1144/SP386.8.
  • Van Hinsberg, V.J., Henry, D.J., & Dutrow, B.L. (2011). Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. Elements, 7, 327–332. DOI: 10.2113/gselements.7.5.327.
  • Walters, J.B. (2022). MinPlot: A mineral formula recalculation and plotting program for electron probe microanalysis. Mineralogia, 53, 51–66. DOI: 10.2478/mipo-2022- 0005.
  • Walters, J.B., Cruz-Uribe, A.M., & Marschall, H.R. (2019). Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochemistry, Geophysics, Geosystems, 20, 2019GC008374. DOI: 10.1029/2019GC008374.
  • Walters, J.B., Cruz-Uribe, A.M., Marschall, H.R., & Boucher, B. (2021). The role of sulfides in the chalcophile and siderophile element budget of the subducted oceanic crust. Geochimica et Cosmochimica Acta, 304, 191- 215. DOI: 10.1016/j.gca.2021.04.016.
  • Walters, J.B., Cruz-Uribe, A.M., Song, W.J., Gerbi, C., & Biela, K. (2022). Strengths and limitations of in situ U-Pb titanite petrochronology in polymetamorphic rocks: An example from western Maine, USA. Journal of Metamorphic Geology, 40, 1043-1066. DOI: 10.1111/ jmg.12657.
  • Walters, J.B., & Kohn, M.J. (2017). Protracted thrusting followed by late rapid cooling of the Greater Himalayan Sequence, Annapurna Himalaya, Central Nepal: Insights from titanite petrochronology. Journal of Metamorphic Geology, 35, 897-917. DOI: 10.1111/ jmg.12260.
  • Wilke, M., Farges, F., Petit, P.E., Brown, J.G., & Martin, F. (2001). Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. American Mineralogist, 86, 714–730. DOI: 10.2138/am-2001-5- 612 Received: 28 Oct 2024 Accepted: 23 Jan 2025 H
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c205736-8b9d-46c0-8d81-bfe3babaf2ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.