PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of a Subjective Grading System and Blending with Polyester on Selected Wool and Yarn Characteristics of Subtropical Egyptian Barki Sheep

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena właściwości przędz mieszanych wełna/poliester
Języki publikacji
EN
Abstrakty
EN
Seven-hundred kilograms of subtropical Barki wool was collected to study the effect of a subjective grading system and blending with polyester on selected wool and yarn characteristics. Wool was graded subjectively into coarse, fine and raw; then each grade was blended with 0%, 15%, 25%, 35% and 45% of polyester. Staple and yarn strengths were higher in both coarse and fine grades compared with raw wool. Staple elongation of the fine grade reached 3 times that of coarse grade and twice as much as raw grade. Also, in the 100% wool blend, yarn elongation of the fine grade was twice as much as both coarse and raw grades. The fine grade had the highest yarn friction, followed by other grades. Generally, adding polyester to coarse and fine grades led to an improved yarn strength compared with the raw grade. Adding 15% polyester caused the highest improvement among other percentages. Correlations among traits were also discussed.
PL
Do badań wykorzystano 700 kg wełny. Dokonano oceny wybranych właściwości wełny i przędz mieszanych wełna/poliester. Wełna była oceniana subiektywnie na grubą, cienką i surową; następnie każdy gatunek został zmieszany z 0%, 15%, 25%, 35% i 45% poliestru. Zbadano wytrzymałość, wydłużenie i współczynnik tarcia przędz. Stwierdzono, że, dodawanie poliestru do grubych i cienkich włókien wełnianych prowadziło do polepszenia wytrzymałości przędz w porównaniu do przędz z włókien surowych. Największą poprawę właściwości spowodowało dodanie 15% poliestru. Omówiono również korelacje między cechami.
Rocznik
Strony
23--27
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
autor
  • Beni-Suef University, Faculty of Agriculture, Animal & Poultry Production Department, Egypt
autor
  • Cairo University, Faculty of Agriculture, Animal & Poultry Production Department, Giza, Egypt
  • Desert Research Center, Animal & Poultry Production Division, Egypt
  • Desert Research Center, Animal & Poultry Production Division, Egypt
  • Desert Research Center, Animal & Poultry Production Division, Egypt
  • Cairo University, Faculty of Agriculture, Animal & Poultry Production Department, Giza, Egypt
Bibliografia
  • 1. Al-Betar EMS. Studies on productive performance and wool traits of Egyptian sheep. M. Sc. Thesis, Faculty of Agriculture, Alexandria University, Alexandria, Egypt, 2000.
  • 2. Guirgis RA. Wool marketing for industrial use and small scale industries for rural development. Proceedings of a workshop on The development of animal production in the desert and newly reclaimed areas, October, Cairo, Egypt, 1995.
  • 3. Helal A, Guirgis RA, El-Ganaieny MM, Talat EE. Some hair characteristics of one-humped camels in relation to textile industry. Proceeding of the First Conference of the International Society of Camelids Research and Development (ISOCARD) 2006.
  • 4. Caffin RN. The CSIRO staple strength/length system. І. Design and performance. Journal of Textile Institute 1980; 71, 2: 65-70.
  • 5. SAS. SAS user guide: Statistics. Version 5 2001; SAS Institute Inc. Cart, NC., USA.
  • 6. Duncan DB. Multiple ranges and multiple F-tests. Biometrics 1955; 11: 1-42.
  • 7. Jones C, Menezes F, Vella F. Auction price anomalies: Evidence from wool auctions in Australia. Economic Record 2004; 80: 271-288.
  • 8. Cottle DJ. Wool preparation and metabolism. In: Cottle, D.J. (Editor), International Sheep and Wool Handbook 2010; Nottingham University Press, Nottingham, UK, pp. 581-618.
  • 9. Mortimer SI, Atkins KD, Semple SJ, Fogarty NM. Predicted Responses in Merino Sheep from Selection Combining Visually Assessed and Measured Traits. Animal Production Science 2010; 50: 976-982.
  • 10. Warn LK, Geenty KB, McEachern S. Wool meets meat: Tools for a modern sheep enterprise. In: Cronjé, P, Maxwell DK. (Eds.) Australian Sheep Industry Cooperative Research Centre Conference, Orange, Australia, 2006, pp. 60-69.
  • 11. Rowe JB. The Australian sheep industry–undergoing transformation. Animal Production Science 2010; 50: 991-997.
  • 12. Helal A, Al-Betar EM, El-Gamal M, Hasan Ghada A. Effects of wool fiber diameter and bulk on fabric bursting strength. Journal of American Science 2014; 10, 7: 14-18.
  • 13. Lamb PR. Wool quality for spinners. Textile and fiber technology 1997; CSIRO on August. www.tft.csiro.au.
  • 14. Naylor GRS. Fabric-evoked prickle in worsted spun single jersey fabric, Part 4: Extension from wool to Optim TM fine fiber. Textile Research Journal 2010; 80: 537-547.
  • 15. Rogers GE, Schlink AC. Wool growth and production. In: Cottle, D.J. (Editor), International Sheep and Wool Handbook; Nottingham University Press, Nottingham, 2010; pp. 373-394.
  • 16. Tester DH. Relationship between comfort meter values and the prickle rating of garments in wearer trials. Animal Production Science 2010; 50: 1077-1081.
  • 17. Naylor GRS. The role of coarse fibers in fabric prickle using blended acrylic fibers of different diameters. Wool Technology and Sheep Breeding 1992; 40, 1: 14-18.
  • 18. El-Gabbas HM, Anous MRI, Al-Betar EM. Wool grading and processing system to improve the utility of the Egyptian Barki wool. Egyptian Journal of Animal Production 2009; 46, 2: 113-128.
  • 19. Dolling M, Naylor GRS, Mariand D, Phillips DG. Knitted fabric made from 23.2um wool can be less prickly than fabric made from finer 21.5um wool. Wool Technology and Sheep Breeding 1992; 40, 2: 69-71.
  • 20. Hansford KA. Fiber diameter distribution: Implications for wool production. Wool Technology and Sheep Breeding 1992; 40 (1): 2-9.
  • 21. Helal A. Industrial characteristics of wool produced from sheep fed on salt tolerant fodder crops. Journal of American Science 2013; 9, 12: 770-777.
  • 22. Whiteley KJ, Thompson B. Distribution of fiber diameter within sale lots of Australian greasy wool. ІІ: Coarse edge statistics. Textile Research Journal 1985; 55: 107-112.
  • 23. Abdel-Moneim AY, El-Gabbas HM, Abdel-Maguid I, Ashmawi GM. Objective measurements and subjective assessments of domestic clip in relation to carpet manufacture. Journal Agricultural Science of Mansoura University 2000; 25, 4: 1963- 1975.
  • 24. Gadallah AAI. Some factors affecting fleece characteristics of Barki sheep. Ph.D. Thesis, Faculty of Agriculture, Menoufia University, Menoufia, Egypt, 2007.
  • 25. Ross DA, Carnaby GA, Lappage J. Woolen-yarn manufacture. Textile Progress 1986; 15, 1/2: 1-51.
  • 26. Helal A, Guirgis RA, El-Ganaieny MM, Gad-Allah EA. Raw material and yarn characteristics of camel-hair, Saidi wool and their blend. Proceeding of 5th International Conference of Textile Research Division, National Research Center, Cairo, Egypt, April 6-8, 2008.
  • 27. Mahar TJ. The role of objective specification for carding wools. Wool Technology and Sheep Breeding 1989; 37, 1: 20 - 26.
  • 28. Hunter L, Leeuwner W, Smuts S, Strydom MA. The correlation between staple strength and single fiber strength for sound and tender wools. South African Wool and Textile Research 1983; 514: 1-15.
  • 29. Ralph IG. Effect of pre-and postnatal grain supplements on wool quality. Proceeding of the Australian Society of Animal Production 1984; 15: 549-552.
  • 30. Rogan IM. Genetic variation and covariation in wool characteristics related to processing performance and their economic significance. Wool Technology and Sheep Breeding 1988; 36, 4.
  • 31. Abdullah I, Blackburn RS, Russell SJ, Taylor J. Abrasion Phenomena in Twill Tencel Fabric. Journal of Applied Polymer Science 2006; 102: 1391–1398.
  • 32. Manich AM, Castellar MDD, Sauri RM, Miguel RA, Barella A. Abrasion kinetics of wool and blended fabric. Textile Research Journal 2001; 71: 469-474.
  • 33. Saville BP. Physical Testing of Textiles, CRC, Woodhead Publishing Limited, Cambridge, England1999.
  • 34. Mingxing Z, Zhuo M, Yize S, Zhibiao Y. Application of Power Ultrasound to Chemical Dissolution for Quantitative Analysis of Cotton and Polyester Blended Fabrics. FIBRES & TEXTILES in Eastern Europe 2017; 25, 5(125): 47-51. DOI: 10.5604/01.3001.0010.4627.
  • 35. Mooy LM, Rottenbury LJ, Smith LJ. The prediction of processing performance of a selection of unusual wool types. Wool Technology and Sheep Breeding 1988; 36, 3: 38- 48.
  • 36. Whiteley KJ. Wool processing. Wool Technology and Sheep Breeding 1987; 35, 2: 109- 113.
  • 37. Phillps DG, Piper, LR, Rottenbury RA, Bow MR, Hansford KA, Naylor GRS. The significance of fiber diameter distribution to the wool industry. Review of CSIRO Workshop held at CSIRO division of wool technology, GEE LONG laboratory on 27-28 November 1991.
  • 38. De Groot GJB. The use of effective fineness to determine the effect of wool-fiberdiameter distribution on yarn properties. Journal of Textile Institute 1995; 86, 33-44.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c1c3456-bd83-43ce-95fd-796d9bdfd256
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.