PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wpływ stałego pola magnetycznego na fermentację metanową komunalnych osadów ściekowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Influence of a constant magnetic field on methane fermentation of municipal sewage sludge
Języki publikacji
PL
Abstrakty
PL
Celem prowadzonych badań było określenie wpływu zastosowania stałego pola magnetycznego na efektywność fermentacji metanowej komunalnych osadów ściekowych. Stwierdzono istotny wpływ tego czynnika fizycznego na skład jakościowy biogazu. Największą wydajność produkcji metanu na poziomie 431±22 dm3CH4/kg s.m.o. oraz jego procentową zawartość wynoszącą 66,1±1,9% stwierdzono w wariancie, w którym czas zatrzymania w obszarze oddziaływania pola magnetycznego wynosił 144 min/doba. Najniższe efekty zanotowano, gdy czas zatrzymania w polu magnetycznym wynosił 432 min/doba. W wariacie tym uzyskano 54,8±1,9% zawartość CH4 w biogazie.
EN
The aim of the study was to determine the effect of the application of a constant magnetic field on the efficiency of methane fermentation of municipal sewage sludge. A significant influence of this physical factor on the qualitative composition of biogas was found. The highest methane production efficiency at the level of 431±22 dm3CH4/kg o.d.m. and its percentage content of 66.1±1.9% was found in the variant where the retention time in the area of the magnetic field impact was 144 min/ day. The lowest effects were observed when the retention time in the magnetic field was 432 min/ day. In this variant, the 54,8±1,9% CH4 in the biogas was obtained.
Rocznik
Tom
Strony
12--17
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Katedra Inżynierii Środowiska, Instytut Inżynierii i Ochrony Środowiska, Wydział Geoinżynierii, Uniwersytet Warmińsko-Mazurski w Olsztynie, 10-720 Olsztyn
  • Katedra Inżynierii Środowiska, Instytut Inżynierii i Ochrony Środowiska, Wydział Geoinżynierii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn
  • Katedra Wodociągów i Kanalizacji, Instytut Inżynierii Środowiska i Energetyki, Wydział Budownictwa i Nauk o Środowisku, Politechnika Białostocka, 15-351 Białystok
Bibliografia
  • [1] Alvarez David Chacón, Victor Haber Pérez, Oselys Rodríguez Justo, Ranulfo Monte Alegre. 2006. “Effect of the extremely low frequency magnetic field on nisin production by Lactococcus lactis subsp. lactis using cheese whey permeate” Process Biochemistry 41 (9), 1967–1973. DOI: 10.1016/j.procbio.2006.04.009.
  • [2] Bora Akash Pratim, Dipanshu Prakash Gupta, Krishna Sandilya Durbha. 2020. “Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel”. Fuel 259, DOI: 10.1016/j.fuel.2019.116262.
  • [3] Černe Marko, Igor Palčić, Igor Pasković, Nikola Major, Marija Romić, Vilim Filipović, Marina Diana Igrc, Aleksandra Perčin, Smiljana Goreta Ban, Benjamin Zorko, Branko Vodenik, Denis Glavič Cindro, Radmila Milačič, David John Heath, Dean Ban. 2019. “The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment”. Waste Management 94, 27–38. DOI: 10.1016/j.wasman.2019.05.032.
  • [4] Chen Hong, Xiaolin Li. 2008. “Effect of static magnetic field on synthesis of polyhydroxyalkanoates from different short-chain fatty acids by activated sludge”. Bioresour Technol. 99 (13), 5538-5544.
  • [5] Crutchik Dafne, Oscar Franchi, Luis Caminos, David Jeison, Marisol Belmonte, Alba Pedrouso, Angeles Val del Rio, Anuska Mosquera-Corral, and José L. Campos. 2020. "Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants?" Water 12(4): 1118. DOI:10.3390/w12041118.
  • [6] Dębowski Marcin, Marcin Zieliński, Marta Kisielewska, Anna Hajduk. 2016. „Effect of constant magnetic field on anaerobic digestion of algal biomass”. Environ. Technol. 37, 1656-63, DOI: 10.1080/09593330.2015.1126362.
  • [7] Dębowski Marcin, Marcin Zieliński, Mirosław Krzemieniewski, Andrzej Brudniak. 2014. “Effect of magneto-active filling on the effectiveness of methane fermentation of dairy wastewaters”. International Journal of Green Energy, DOI: 10.1080/15435075.2014.909362.
  • [8] Dębowski Marcin, Mirosław Krzemieniewski, Marcin Zieliński. 2007. “Constant magnetic field influencing on the stabilization of the excess sludge with Fenton’s reagent”. Pol. J. Env. Stud. 16 (1), 43-50.
  • [9] Di Capua Francesco, Danilo Spasiano, Andrea Giordano, Fabrizio Adani, Umberto Fratino, Francesco Pirozzi, Giovanni Esposito. 2020. “High-solid anaerobic digestion of sewage sludge: challenges and opportunities”. Applied Energy 278. DOI: 10.1016/j.apenergy.2020.115608.
  • [10] Dini Luciana, Luigi Abbro. 2005. “Bioeffects of moderate intensity static magnetic fields on cell cultures”. Micron 36 (3), 195–217. DOI: 10.1016/j.micron.2004.12.009
  • [11] Djandja Oraléou Sangué, Zhi-Cong Wang, Feng Wang, Yu-Ping Xu, Pei-Gao Duan. 2020. “Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review”. Industrial & Engineering Chemistry Research 59, 39, 16939-16956. DOI:10.1021/acs.iecr.0c01546.
  • [12] Elalami Doha, Hélène Carrere, Florian Monlau, Karima Abdelouahdi, Abdallah Qukarroum, Abdellatif Barakat. 2019. “Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends”. Renew. Sustain. Energy Rev. 114. DOI: 10.1016/j.rser.2019.109287
  • [13] EUR-Lex Access to European Union law: Directive 86/278/EEC – Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC), Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CE-LEX%3A01986L0278-20180704, accessed on 29.11.2020.
  • [14] Janosz-Rajczyk Marta, Agnieszka Tomska. 2002a. “The influence of magnetic field on the process of wastewater treatment (part I):Transformations of organic compounds and nitrogen in the magnetic field induction 180 mT (in Polish)”. Archives of Environmental Protection. 28 (3), 51-61.
  • [15] Janosz-Rajczyk Marta, Agnieszka Tomska. 2002b. “The influence of magnetic field on the process of wastewater treatment (part I): Transformations of organic compounds and nitrogen in the magnetic field induction 20 mT and 40 mT (in Polish)”. Archives of environmental Protection. 28 (3), 41-50.
  • [16] Ji Yulan, Yanhong Wang, Jinsheng Sun, Tingyan Yan, Jing Li, Tingting Zhao, Xiaohong Yin, Changjiang Sun. 2010. “Enhancement of biological treatment of wastewater by magnetic field”. Bioresour. Technol. 101, 8535–8540. DOI: 10.1016/j.biortech.2010.05.094.
  • [17] Jung Jongtai, Samir Sofer. 1997. “Enhancement of phenol biodegradation by south magnetic field exposure”. J. Chem. Technol. Biotechnol. 70, 229–303.
  • [18] Kiselev Andrey, Elena Magaril, Romen Magaril, Deborah Panepinto, Marco Ravina, and Maria C. Zanetti 2019. "Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions" Resources 8, no. 2: 91. DOI: 10.3390/resources8020091.
  • [19] Krzemieniewski Mirosław, Marcin Dębowski, Adriana Dobrzyńska, Marcin Zieliński. 2004. “Chemical oxygen demand reduction of various wastewater types using magnetic field – assisted Fenton reaction”. Wat. Env. Res. 76 (4), 301–305.
  • [20] Lai Henry. 2019. “Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals”. Electromagnetic Biology and Medicine 38 (4), 231-248, DOI: 10.1080/15368378.2019.1656645.
  • [21] Liu Bowen, Ruofei Jin, Guangfei Liu, Chen Gu, Bin Dong, Jiti Zhou, Defreng Xing. 2019. “Effect on sludge disintegration by EDTA-enhanced thermal-alkaline treatment”. Water environment research 92 (1), 42-50. DOI: 10.1002/wer.1156.
  • [22] Liu Xuran, Qiuxiang Xu, Dongbo Wang, Yanxin Wu, Qi Yang, Yiwen Liu, Qilin Wang, Xiaoming Li, Hailong Li, Guangming Zeng, Guojing Yang. 2019. “Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge”. Water Res 155,142–151. DOI: 10.1016/J.WATRES.2019.02.036.
  • [23] Mancuso Giuseppe, Michela Langone, Gianni Andreottola, Laura Bruni. 2019. “Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation”. Ultrason Sonochem. 59, 104750. DOI: 10.1016/j.ultsonch.2019.104750.
  • [24] Okuno Kazumasa, Koji Tuchiya, Takashi Ano, Makoto Shoda. 1993. “Effect of super high magnetic field on growth of Escherichia coli under various medium compositions and temperatures”. J. Ferment. Bioeng. 75 (2), 103–106. DOI: 10.1016/0922-338X(93)90218-W.
  • [25] Oladejo Jumoke, Kaiqi Shi, Xiang Luo, Gang Yang, and Tao Wu. 2019. "A Review of Sludge-to-Energy Recovery Methods" Energies 12, no. 1: 60. DOI: 10.3390/en12010060.
  • [26] Preisner Michał, Elena Neverova-Dziopak, Zbigniew Kowalewski. “Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach”. Ambio 50: 413-424. DOI: 10.1007/s13280-020-01346-4.
  • [27] Qin Yong, Haoshu Wang, Xiangru Li, Jay Jiayang Cheng, Weixiang Wu. 2017. “Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar”. Bioresource Technology 245, Part A, 1058-1066, DOI: 10.1016/j.biortech.2017.09.047.
  • [28] Qu Guangfei, Pei Lv, Yingying Cai, Can Tu, Xi Ma, Ping Ning. 2020. “Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields”. Renewable Energy 146, 2758-2765, DOI: 10.1016/j.renene.2019.06.050.
  • [29] Sarraf Mohammad, Sunita Kataria, Houda Taimourya, Lucielen O. Santos, Renata D. Menegatti, Meeta Jain, Muhammad Ihtisham, and Shiliang Liu. 2020. "Magnetic Field (MF) Applications in Plants: An Overview" Plants 9, no. 9: 1139. https://doi.org/10.3390/plants9091139.
  • [30] Tytła Malwina. 2020. "Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use" International Journal of Environmental Research and Public Health 17, no. 13: 4640. DOI: 10.3390/ijerph17134640.
  • [31] Wacławek Stanisław, Klaudiusz Grübel, Daniele Silvestri, Vinod V.T. Padil, Maria Wacławek, Miroslav Černík, and Rajender S. Varma 2019. "Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production" Energies 12 (1): 21. DOI: 10.3390/en12010021.
  • [32] Yadollahpour Ali, Samaneh Rashidi, Zohre Ghotbeddin, Mostafa Jalilifar, Zohreh Rezaee. 2014. “Electromagnetic fields for treatments of wastewater: a review of applications and future opportunities”. J. Pure Appl. Microbiol. 8 (5), 3711–3719.
  • [33] Yavuz Hülya, Serdar S. Çelebi. 2000. “Effects of magnetic field on activity of activated sludge in wastewater treatment”. Enzyme and Microbial Technology 26, 22–27. DOI: 10.1016/S0141-0229(99)00121-0.
  • [34] Zhang Guangming, Panyue Zhang, Jinmei Yang, Yanming Chen. 2007. “Ultrasonic reduction of excess sludge from the activated sludge system”. Journal of Hazardous Materials 145, 515-519. DOI: 10.1016/j.jhazmat.2007.01.133.
  • [35] Zhao Bo, Hao Sha, Jinwen Li, Shengxian Cao, Gong Wang, Yuyi Yang. 2020. “Static magnetic field enhanced methane production via stimulating the growth and composition of microbial community”. J. Clean. Prod. 271, 122664.
  • [36] Zhou Guangli, Yifan Gu, Haoran Yuan, Yu Gong, Yufeng Wu. 2020. “Selecting sustainable technologies for disposal of municipal sewage sludge using a multicriterion decision-making method: A case study from China”. Resour. Conserv. Recycl. 161, DOI: 10.1016/j.resconrec.2020.104881.
  • [37] Zieliński Marcin, Marcin Dębowski, Mirosław Krzemieniewski, Magda Dudek, Anna Grala. 2014. “Effect of constant magnetic field with various values of magnetic induction on effectiveness of dairy wastewaters treatment under anaerobic conditions”. Pol. J. Environ. Stud. 23 (1), 255–261.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c162725-d528-40a7-8ed5-e133ed29d6db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.