PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthetic Gas Production from Fine Coal Gasification Using Low-Cost Catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilisation of fine coal waste is still limited, even though its availability is very abundant in the mining industry. This study utilises fine coal by converting it into syngas through catalytic gasification. The gasification process was carried out at a temperature range of 350–550°C for 10–50 minutes using natural zeolite as a catalyst. The syngas composition and quality parameters were evaluated through the H2/CO ratio, heating value, and gasification efficiency. From the research results, fine coal contained high amounts of carbon and fixed carbon. Temperature is the variable that most influences the gasification process. The addition of zeolite actively increased the CO content in the syngas. The H2/CO ratio of syngas >1, the highest HHV and LHV 16.15 and 14.46 MJ/Nm3 with the highest carbon conversion efficiency value of 88.85%, made fine coal very suitable to be used as raw material for the gasification process to produce environmentally friendly syngas.
Słowa kluczowe
Rocznik
Strony
64--72
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan, 30662, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan, 30662, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan, 30662, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan, 30662, Indonesia
  • Doctoral Program of Environmental Science, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, South Sumatra, 30139, Indonesia
Bibliografia
  • 1. Al-asadi M., Miskolczi N., Eller Z. 2020. Pyrolysisgasification of wastes plastics for syngas production using metal modified zeolite catalysts under different ratio of nitrogen/oxygen. Journal of Cleaner Production, 271, 122186. https://doi.org/10.1016/j.jclepro.2020.122186
  • 2. Aprianti N., Faizal M., Said M., Nasir S. 2020. Valorization of palm empty fruit bunch waste for syngas production through gasification. Journal of Ecological Engineering, 21(7), 17–26.
  • 3. Aprianti N., Faizal M., Said M., Nasir S. 2021. Catalytic Gasification of Oil Palm Empty Fruit Bunch by Using Indonesian Bentonite as The Catalyst. Journal of Applied Engineering Science, 19(2), 334–343. https://doi.org/10.5937/jaes0-28781
  • 4. Arun K., Venkata Ramanan M., Mohanasutan S. 2020. Comparative studies and analysis on gasification of coconut shells and corn cobs in a perforated fixed bed downdraft reactor by admitting air through equally spaced conduits. Biomass Conversion and Biorefinery, 71. https://doi.org/10.1007/s13399-020-00872-1
  • 5. Babatabar M.A., Saidi M. 2021. Hydrogen production via integrated configuration of steam gasification process of biomass and water-gas shift reaction: Process simulation and optimization. International Journal of Energy Research, 45(13), 19378–19394. https://doi.org/10.1002/er.7087
  • 6. Baskoro F.R., Takahashi K., Morikawa K., Nagasawa K. 2021. System dynamics approach in determining coal utilization scenario in Indonesia. Resources Policy, 73, 102209. https://doi.org/10.1016/j.resourpol.2021.102209
  • 7. Bian C., Zhang R., Dong L., Bai B., Li W., Jin H., Cao C. 2020. Hydrogen / Methane Production from Supercritical Water Gasi fi cation of Lignite Coal with Plastic Waste Blends. https://doi.org/10.1021/acs.energyfuels.0c02182
  • 8. Butera G., Fendt S., Jensen S.H., Ahrenfeldt J., Clausen L.R. 2020. Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies. Energy, 208, 118432. https://doi.org/10.1016/j.energy.2020.118432
  • 9. Faizal M., Aprianti N., Said M., Nasir S. 2021a. Syngas Derived From Catalytic Gasification of Fine Coal Waste Using Indonesian Potential Catalyst. Journal of Applied Engineering Science, 19(4), 934–941. https://doi.org/10.5937/jaes0-30990
  • 10. Faizal M., Said M., Nurisman E., Aprianti N. 2021b. Purification of Synthetic Gas from Fine Coal Waste Gasification as a Clean Fuel. Journal of Ecological Engineering, 22(5), 114–120. https://doi.org/10.12911/22998993/135862
  • 11. González-Vázquez M.P., García R., Gil M.V., Pevida C., Rubiera F. 2018. Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 176, 309–323. https://doi.org/10.1016/j.enconman.2018.09.020
  • 12. Huang J., Qiao Y., Wei X., Zhou J., Yu Y., Xu M. 2019. Effect of torrefaction on steam gasification of starchy food waste. Fuel, 253, 1556–1564. https://doi.org/10.1016/j.fuel.2019.05.142
  • 13. Islam M.W. 2020. A review of dolomite catalyst for biomass gasification tar removal. Fuel, 267, 117095. https://doi.org/10.1016/j.fuel.2020.117095
  • 14. Ismail T.M., El-Salam M.A. 2017. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. Applied Thermal Engineering, 112, 1460–1473. https://doi.org/10.1016/j.applthermaleng.2016.10.026
  • 15. Kislov V.M., Salganskii E.A., Tsvetkov M.V., Tsvetkova Y.Y. 2017. Effect of catalysts on the yield of products formed in biomass gasification. Russian Journal of Applied Chemistry, 90(5), 716–720. https://doi.org/10.1134/S1070427217050081
  • 16. Kook J.W., Choi H.M., Kim B.H., Ra H.W., Yoon S.J., Mun T.Y., Kim J.H., Kim Y.K., Lee J.G., Seo M.W. 2016. Gasification and tar removal characteristics of rice husk in a bubbling fluidized bed reactor. Fuel, 181, 942–950. https://doi.org/10.1016/j.fuel.2016.05.027
  • 17. Lalsare A., Wang Y., Li Q., Sivri A., Vukmanovich R.J., Dumitrescu C.E., Hu J. 2019. Hydrogen-Rich Syngas Production through Synergistic Methane-Activated Catalytic Biomass Gasification. ACS Sustainable Chemistry and Engineering, 7(19), 16060–16071. https://doi.org/10.1021/acssuschemeng.9b02663
  • 18. Li W., Wu S., Wu Y., Huang S., Gao J. 2019. Gasification characteristics of biomass at a high-temperature steam atmosphere. Fuel Processing Technology, 194, 106090. https://doi.org/10.1016/j.fuproc.2019.05.013
  • 19. Lin C.L., Weng W.C. 2017. Effects of different operating parameters on the syngas composition in a twostage gasification process. Renewable Energy, 109, 135–143. https://doi.org/10.1016/j.renene.2017.03.019
  • 20. Ma X., Zhao X., Gu J., Shi J. 2019. Co-gasification of coal and biomass blends using dolomite and olivine as catalysts. Renewable Energy, 132, 509–514. https://doi.org/10.1016/j.renene.2018.07.077
  • 21. Mardani M., Tsolakis A., Nozari H., Herreros J.M., Wahbi A. 2021. Synergies in renewable fuels and exhaust heat thermochemical recovery in low carbon vehicles. Applied Energy, 302, 117491. https://doi.org/10.1016/j.apenergy.2021.117491
  • 22. Munawer M.E. 2018. Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96. https://doi.org/10.1016/j.jsm.2017.12.007
  • 23. Rana R., Nanda S., Maclennan A., Hu Y., Kozinski J.A., Dalai A.K. 2019. Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water. Journal of Energy Chemistry, 31, 107–118. https://doi.org/10.1016/j.jechem.2018.05.012
  • 24. Robinson T., Bronson B., Gogolek P., Mehrani P. 2016. Comparison of the air-blown bubbling fluidized bed gasification of wood and wood-PET pellets. Fuel, 178, 263–271. https://doi.org/10.1016/j.fuel.2016.03.038
  • 25. Rosner F., Chen Q., Rao A., Samuelsen S. 2019. Thermo-economic analyses of concepts for increasing carbon capture in high-methane syngas integrated gasification combined cycle power plants. Energy Conversion and Management, 199, 112020. https://doi.org/10.1016/j.enconman.2019.112020
  • 26. Salavati S., Zhang C.T., Zhang S., Liu Q., Gholizadeh M., Hu X. 2019. Cross-interaction during Co-gasification of wood, weed, plastic, tire and carton. Journal of Environmental Management, 250, 109467. https://doi.org/10.1016/j.jenvman.2019.109467
  • 27. Saleem F., Zhang K., Harvey A. 2019. Plasma-assisted decomposition of a biomass gasification tar analogue into lower hydrocarbons in a synthetic product gas using a dielectric barrier discharge reactor. Fuel, 235, 1412–1419. https://doi.org/10.1016/j.fuel.2018.08.010
  • 28. Singh D.K., Tirkey J.V. 2022. Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas. Energy, 238, 121982. https://doi.org/10.1016/j.energy.2021.121982
  • 29. Tsalidis G.A., Di Marcello M., Spinelli G., de Jong W., Kiel J.H.A. 2017. The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood. Biomass and Bioenergy, 106, 155–165. https://doi.org/10.1016/j.biombioe.2017.09.001
  • 30. Umar H.A., Sulaiman S.A., Said M.A., Gungor A., Ahmad R.K., Inayat M. 2021. Syngas production from gasification and co-gasification of oil palm trunk and frond using a down-draft gasifier. International Journal of Energy Research, 45(5), 8103–8115. https://doi.org/10.1002/er.6345
  • 31. Valizadeh S., Jang S.H., Hoon Rhee G., Lee J., Loke Show P., Ali Khan M., Jeon B.H., Andrew Lin K.Y., Hyun Ko C., Chen W.H., Park Y.K. 2021. Biohydrogen production from furniture waste via catalytic gasification in air over Ni-loaded Ultra-stable Y-type zeolite. Chemical Engineering Journal, September, 133793. https://doi.org/10.1016/j.cej.2021.133793
  • 32. Wang D., Chen P., Liu Y., Wu C., Liu J. 2017. Heat transfer characteristics of a novel sleeping bed with an integrated hot water heating system. Applied Thermal Engineering, 113, 79–86. https://doi.org/10.1016/j.applthermaleng.2016.11.027
  • 33. Xiong S., He J., Yang Z., Guo M., Yan Y. 2020. Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture. Energy, 194, 116831. https://doi.org/10.1016/j.energy.2019.116831
  • 34. Yilmaz F., Ozturk M., Selbas R. 2019. Design and thermodynamic analysis of coal-gasification assisted multigeneration system with hydrogen production and liquefaction. Energy Conversion and Management, 186, 229–240. https://doi.org/10.1016/j.enconman.2019.02.053
  • 35. Zhu H.L., Zhang Y.S., Materazzi M., Aranda G., Brett D.J.L., Shearing P.R., Manos G. 2019. Co-gasification of beech-wood and polyethylene in a fluidizedbed reactor. Fuel Processing Technology, 190, 29–37. https://doi.org/10.1016/j.fuproc.2019.03.010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c154728-be98-4047-9ff0-3c4152f06135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.