PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water demand time series forecast by autoregressive distributed lag (ARDL) co-integration model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article examines the short- and long-run effects of water price, system input, income, temperature on domestic water demand for Amman area over the period of 1980–2012. An empirical, dynamic autoregressive distributed lag (ARDL) model for water demand is developed on a yearly basis. This approach is capable of testing and analysing the dynamic relationship with time series data using a single equation regressions. Results show the ability of the model to predicting future trends (short- and long-run association). The main results indicate that water demand in limited water environment is partially captured in the long-run by the amount of water reaching the customer. The short- and long-run elasticities of water price (–0.061, –0.028) and high temperature (0.023, 0.054) indicate inelastic behaviour on water demand both in short- and long-run, while the lagged water price has a significant effect on demand. Income represented by gross domestic product (GDP) slightly affects water consumption in the long-run and insignificantly in the short-run (0.24, 0.24). Water consumption is strongly linked to consumption habits measured by lagged billed amount 0.35, and is strongly linked to amount of supplied water both in short- and long-run (0.47, 0.53). These results suggest that water needs should be satisfied first to allow controlling water demand through a good pricing system. Moreover, the association identified between demand and water system input, and the lesser elasticities of water price and other explanatory variables confirm the condition of water deficit in Amman area and Jordan. The results could be rolled out to similar cities suffering scarce water resources with arid and semi-arid weather conditions.
Wydawca
Rocznik
Tom
Strony
195--206
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Yarmouk University, Hijjawi Faculty of Engineering Technology, P.O. Box 566 ZipCode 21163, Irbid, Jordan
autor
  • Yarmouk University, Hijjawi Faculty of Engineering Technology, P.O. Box 566 ZipCode 21163, Irbid, Jordan
  • Al-Ahliyya Amman University Al-Saro, Faculty of Engineering, Amman, Jordan
  • Al-Ahliyya Amman University Al-Saro, Faculty of Engineering, Amman, Jordan
Bibliografia
  • AJLOUNI S. 2016. Price and income elasticities of residential demand for electricity in Jordan: An ARDL bounds testing approach to cointegration. Dirasat: Administrative Sciences. Vol. 43(1) p. 335–349. DOI 10.12816/0028467.
  • AL-NAJJAR F.O., AL-KARABLIEH E.K., SALMAN A. 2011. Residential water demand elasticity in Greater Amman Area. Jordan Journal of Agricultural Sciences. Vol. 7(1) p. 93–103.
  • ARBUÉS F., GARCÍA-VALIÑAS M.Á., MARTÍNEZ-ESPIÑEIRA R. 2003. Estimation of residential water demand: A State-of-the-art review. Journal of Socio-Economics. Vol. 2 (1) p. 81–102. DOI 10.1016/ S1053-5357(03)00005-2.
  • ARBUÉS F., VILLANÚA I., BARBERÁN R. 2010. Household size and residential water demand: An empirical approach. Australian Journal of Agricultural and Resource Economics. Vol. 54(1) p. 61–80. DOI 10.1111/j.1467-8489.2009.00479.x.
  • BERREDJEM A.-F., HANI A. 2017. Modelling current and future supply and water demand in the northern region of the Seybouse Valley. Journal of Water and Land Development. No. 33 p. 31–38. DOI 10.1515/jwld-2017-0016.
  • BOUZNAD I.E., ELAHCENE O., BELKSIER M.S. 2020. Management model for water demand using the WEAP tool: Case of Setif Province – Algerian highlands. Journal of Water and Land Development. No. 45 (IV–VI) p. 19–28. DOI 10.24425/jwld.2020.133042.
  • CARVER P.H., BOLAND J.J. 1980. Short- and long-run effects of price on municipal water use. Water Resources Research. Vol. 16(4) p. 609–616. DOI 10.1029/WR016i004p00609.
  • Department of Statistics 2020a. Growth rate prices [online]. [Access 13.08.2020]. Available at: http://dosweb.dos.gov.jo/category/gdp/
  • Department of Statistics 2020b. Population [online]. [Access 13.08.2020]. Available at: http://dosweb.dos.gov.jo/population/ population-2/
  • DICKEY D.A., FULLER W.A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association. Vol. 74(366) p. 427–341 DOI 10.1080/01621459.1979.10482531.
  • GAM I., AÏCHA R.B., REJEB J.B. 2013. Water demand, distribution and consumption forecasting: Case of Tunisia. International Journal of Advances in Management and Economics. Vol. 2(4) p. 137– 146.
  • GRANGER C.W.J., NEWBOLD P. 1974. Spurious regressions in econo-metrics. Journal of Econometrics. Vol. 2. Iss. 2 p. 111–120. DOI 10.1016/0304-4076(74)90034-7.
  • HASSLER U., WOLTERS J. 2006. Autoregressive Distributed Lag Models and Cointegration. In: Modern econometric analysis. Eds. O. Hübler, J. Frohn. Berlin, Heidelberg. Springer p. 57–72. DOI 10.1007/3-540-32693-6_5.
  • HE P., ZOU X., QIAO Y., CHEN L., WANG X., LUO X., NING J. 2019. Does the double dividend of environmental tax really play a role in OECD countries? A study based on the panel ARDL Model. Ekoloji. Vol. 28(107) p. 49–62.
  • HERRERA M., TORGO L., IZQUIERDO J., PÉREZ-GARCÍA R. 2010. Predictive models for forecasting hourly urban water demand. Journal of Hydrology. Vol. 387(1–2) p. 141–150. DOI 10.1016/j.jhydrol .2010.04.005.
  • HOUSE-PETERS LA, CHANG H. 2011. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resources Research. Vol 47(5), W05401. DOI 10.1029/2010 WR009624.
  • MARTÍNEZ-ESPIÑEIRA R. 2002. Residential water demand in the North-west of Spain. Environmental and Resource Economics. Vol. 21 (2) p. 161–187. DOI 10.1023/A:1014547616408.
  • MARTÍNEZ-ESPIÑEIRA R. 2007. An estimation of residential water demand using co-integration and error correction techniques. Journal of Applied Economics. Vol. 10(1) p. 161–184. DOI 10.1080/ 15140326.2007.12040486.
  • MARTÍNEZ-ESPIÑEIRA R., NAUGES C. 2004. Is all domestic water con-sumption sensitive to price control?. Applied Economics. Vol. 36 (15) p. 1697–1703. DOI 10.1080/0003684042000218570.
  • MWI 2013. Jordan water sector facts and figures. Jordan Water Sector Facts and Figures. Amman. Ministry of Water and Irrigation. [Access 15.06.2020]. Available at: https://jordankmportal.com/ resources/jordan-water-sector-facts-and-figures-1
  • MWI 2016. National water strategy 2016–2025. Amman. Ministry of Water and Irrigation. [Access 15.06.2020]. Available at: http:// www.fao.org/faolex/results/details/en/c/LEX-FAOC156264/
  • MIODUSZEWSKI W. 2006. Management of water resources in rural areas: The Polish approach. Journal of Water and Land Development. No. 10 p. 3–14. DOI 10.2478/v10025-007-0001-y.
  • MOMEN F.A., BUTLER D. 2006. Water consumption trends and demand forecasting techniques. In: Water demand management. Eds. D. Butler, F. Memon. IWA Publishing. Vol. 5. Water Research Foundation Report Series p. 1–26.
  • MUSOLESI A., NOSVELLI M. 2007. Dynamics of residential water consumption in a panel of Italian municipalities. Applied Economics Letters. Vol. 14(6) p. 441–444. DOI 10.1080/ 13504850500425642.
  • MUSOLESI A., NOSVELLI M. 2010. Long-run water demand estimation: Habits, adjustment dynamics and structural breaks. Applied Economics. Vol. 43(17) p. 2111–2127. DOI 10.1080/ 00036840903066642.
  • NAUGES C., THOMAS A. 2003. Long-run study of residential water consumption. Environmental and resource Economics. Vol. 26 (1) p. 25–43.
  • NKORO E., UKO A.K. 2016. Autoregressive distributed lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric Methods. Vol. 5(4) p. 63–91. DOI 10.1002/jae.616.
  • PESARAN M.H., SHIN Y. 1999. An autoregressive distributed lag modelling approach to cointegration analysis. In: Econometrics and Economic Theory in the 20th Century The Ragnar Frisch Centennial Symposium. Ed. S. Strom. Cambridge University Press p. 371–413. DOI 10.1017/ccol521633230.011.
  • PESARAN M.H., SHIN Y., SMITH R.J. 2001. Bounds testing approaches to the analysis of level relationships. Journal of applied Econometrics. Vol. 16(3) p. 289–326. DOI 10.1002/ jae.616.
  • PHILLIPS P.C., PERRON P. 1988. Testing for a unit root in time series regression. Biometrika. Vol. 75(2) p. 335–346. DOI 10.1093/ biomet/75.2.335.
  • SALMAN A., AL-KARABLIEH E. 2006. Socioeconomic factors influencing the households water demand function in socioeconomic factors influencing the household water demand function in Jordan. In: International Conference: Integrated Water Resource Manage-ment and Challenges of the Sustainable Development at Marrakech, Morocco p. 1–5.
  • SCHEFTER J.E., DAVID E.L. 1985. Estimating residential water demand imulti-part tariffs using aggregate data. Land Economics. Vol. 61 (3) p. 272–280. DOI 10.2307/3145842.
  • TABIEH M., SALMAN A., AL-KARABLIEH E., AL-QUDAH H., AL-KHATIB H. 2012. The residental water demand function in Amman – Zarka Basin in Jordan. Wulfenia Journal. Vol. 19(11) p. 324–333.
  • TAŞTAN H. 2018. Estimation of dynamic water demand function: The case of Istanbul. Urban Water Journal. Vol. 15(1) p. 75–82. DOI 10.1080/1573062X.2017.1395899.
  • TOUMI S., TOUMI H. 2019. Asymmetric causality among renewable energy consumption, CO2 emissions, and economic growth in KSA: Evidence from a non-linear ARDL model. Environmental Science and Pollution Research. Vol. 26(16) p. 16145–16156. DOI 10.1007/s11356-019-04955-z.
  • VÖRÖSMARTY C.J., GREEN P., SALISBURY J., LAMMERS R.B. 2000. Global water resources: Vulnerability from climate change and population growth. Science. Vol. 289(5477) p. 284–288. DOI 10.1126/ science.289.5477.284.
  • WORTHINGTON A.C., HOFFMANN M. 2007. A state of the art review of residential water demand modelling. University of Wollongong, School of Accounting and Finance. Working Paper 6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c11a699-9b2b-46a6-9dcc-2b4e7ac8df4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.