PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis of magneto-rheological relief valve using a permanent magnet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applications of magneto-rheological fluids have become many, and important. Especially the valves used in dampers and hydraulic systems. Including the pressure relief valve. But all of these valves are type normally open. However, the pressure relief valve should be of the normally closed type. This study presents the concept of a magneto-rheological pressure relief valve using a permanent magnetic, along with a comprehensive analysis. Using FEMM software the design analysis was performed, to determine the efficiency of its performance and work. As a result of the work, the appropriate current value was determined, which is 0.17 amps, along with the number of turns of the electric coil, the best of which was 240 turns, which was applied to open the valve at the appropriate pressure. The maximum pressure was about 2500 kPa, which can be tolerated in the valve also calculated. Through the analysis, it was also determined that 1 mm is the best thickness for the gap. As well as choose the type and dimension of the proper permanent magnet. With this work, the design is considered very suitable and efficient, and it can be developed in the future based on the same principle and method.
Twórcy
  • Department of Mechatronics Eng., Al-Khawarizmi Eng. College, University of Baghdad, Baghdad, Iraq
  • Department of Mechatronics Eng., Al-Khawarizmi Eng. College, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Hu, G., Wu, L., Deng, Y., Yu, L., Luo, B. Damping performance analysis of magnetorheological damper based on multiphysics coupling. Actuators 2021, 10, 176. https://doi.org/10.3390/act10080176
  • 2. Zhu, Y.; Yan, R.; Liu, D.; Deng, X.; Yao, J. Investigation of a new vibration-absorbing roller cage shoe with a magnetorheological damper in mine hoisting systems. Appl. Sci. 2023, 13, 12506. https://doi.org/10.3390/app132212506
  • 3. Hu G, Liu H, Duan J, Yu L. Damping performance analysis of magnetorheological damper with serial-type flow channels. Advances in Mechanical Engineering. 2019, 11(1). https://doi.org/10.1177/1687814018816842
  • 4. Fu, J., Huang, C., Shu, R., Li, X.-Q., Chen, M., Chen, Z., Chen, B. Multi-objective optimization of magnetorheological mount considering optimal damping force and maximum adjustable coefficient. Machines 2023, 11, 60. https://doi.org/10.3390/machines11010060
  • 5. Salloom, M.Y., Samad, Z. Design and modeling magnetorheological directional control valve. Journal of Intelligent Material Systems and Structures. 2012, 23(2), 155–167. https://doi.org/10.1177/1045389X11432654
  • 6. Salloom, M.Y., Samad, Z. Magneto-rheological directional control valve. Int J Adv Manuf Technol 2012, 58, 279–292. https://doi.org/10.1007/s00170-011-3377-4
  • 7. Yang, X., Li, Y., Zhou, Y., Zhou, S. and Zhu, J. Design and numerical study of hybrid magnetic source disc-type magnetorheological valve. Journal of Magnetics 2023, 124–134. https://doi.org/10.4283/JMAG.2023.28.2.124
  • 8. Kumar, J.S., Alex, D.G., Sam, P.P. Synthesis of magnetorheological fluid compositions for valve mode operation, materials today: Proceedings, 2020, 22(4), 1870–1877. https://doi.org/10.1016/j.matpr.2020.03.086
  • 9. Zhu W., Li, P., Hu, G., Yu, L. Experimental and numerical analysis of magnetorheological valve based on Herschel–Bulkley–Papanastasiou model, Journal of Magnetism and Magnetic Materials, 2024, 602, 172169. https://doi.org/10.1016/j.jmmm.2024.172169.
  • 10. Park, E.-J. and Kim, Y.-J. Torque ripple according to the number of permanent magnet poles of magnetic gear, Journal of Magnetics, 2022, 27(1), 51–55. https://doi.org/10.4283/JMAG.2022.27.1.051
  • 11. Salloom, M.Y. FEM analysis and design of permanent magnet disk type magneto-rheological (MR) valve. AIP Conf. Proc. 2020, 2213, 020324. https://doi.org/10.1063/5.0000160
  • 12. Kamal, H.A., Salloom, M.Y. Analysis of magnetorheological normally close directional control valve. Al-Khwarizmi Engineering Journal, 2021, 17(4), 11–22. https://doi.org/10.22153/kej.2021.12.005
  • 13. Zhu, W., Hu, G., Shu, H., Li, P. and Yu, L. Numerical and experimental analyses of magnetorheological damper based on Herschel–Bulkley–Papanastasiou model. http://dx.doi.org/10.2139/ssrn.4425239
  • 14. Kamal, H.A., Salloom, M.Y. Evaluation of FEMM software for magnetic analysis of the magnetorheological application. AIP Conf. Proc. 2022, 2415, 060021. https://doi.org/10.1063/5.0092911
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c1093b1-aace-4ec0-ae60-2ccd2910f2f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.