Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an overview of selected unmanned aerial vehicle (UAV) designs to show the development of unmanned aircraft. In this context, the paper describes the application of CAD design in creating a 3D model in order to perform basic aerodynamic CFD simulations. The IAI Heron was selected for geometry modelling. Based on digital analyses of publicly available design materials and photographs, simplified models of the selected structure were created using the SolidWorks software. Basic aerodynamic characteristics of the developed geometric model of the AIA Heron were obtained by calculations made with ANSYS Fluent. The paper analyses the results obtained and compares them to data in the literature for a similar class of UAV. The prepared model will serve as a basis for future 3D prints. The developed CFD numerical model will be used for further comparative analysis and validation in wind tunnel tests.
Wydawca
Rocznik
Tom
Strony
235--247
Opis fizyczny
Bibliogr. 43 poz., fig., tab.
Twórcy
autor
- Polish Air Force University, Faculty of Aviation, Dywizjonu 303 Street No 35, 08-521 Dęblin, Poland
autor
- Polish Air Force University, Faculty of Aviation, Dywizjonu 303 Street No 35, 08-521 Dęblin, Poland
autor
- Polish Air Force University, Faculty of Aviation, Dywizjonu 303 Street No 35, 08-521 Dęblin, Poland
autor
- LOT Polish Airlines, Komitetu Obrony Robotników Street No 43, 02-146 Warsaw, Poland
autor
- Polish Air Force University, Faculty of Aviation, Dywizjonu 303 Street No 35, 08-521 Dęblin, Poland
autor
- Military University of Technology, Faculty of Mechatronics, Armament and Aerospace Gen. Sylwestra Kaliskiego Street No 2, 00-908 Warsaw, Poland
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka Street No 36, 20-618 Lublin, Poland
autor
- Vilinius TECH, Laboratory of Experimental Mechanics, Sauletekio al. 11, Vilnius, 10223, Lithuania
autor
- Laboratory of Energy, Water, and Environment, National Advanced School of Engineering of Yaoundé, P.O. Box 8390, Yaounde, Cameroon
Bibliografia
- 1. Liu Y, Dai H-N, Wang Q, Shukla MK, Imran M. Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Comput Commun 2020;155:66–83. https://doi.org/10.1016/j.comcom.2020.03.017.
- 2. Vashisht S, Jain S, Aujla GA. Mac protocols for unmanned aerial vehicle ecosystems: Review and challenges. Comput Commun. 2020;160:443–463. https://doi.org/10.1016/j.comcom.2020.06.011.
- 3. Drones: Reporting for work. https://www.goldmansachs.com/insights/technology-driving-innovation/drones/ [accessed 15 May 2021].
- 4. Chamola V, Kotesh P, Agarwal A, Naren, Gupta N, Guizani M. A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad Hoc Netw. 2021;111:102324. https://doi.org/10.1016/j.adhoc.2020.102324.
- 5. Karpowicz J, Kozłowski K. Unmanned Aerial Vehicles and Miniature Flying Devices. Possibilities and Scope of Use in Military Operations. Warsaw: National Defense University; 2003 [in Polish].
- 6. Keane J, Carr S. A brief history of early unmanned aircraft. Johns Hopkins Apl Technical Digest. 2013;32:558–571.
- 7. Kettering Bug w National Museum of the United States Air Force. http://i208.photobucket.com/albums/bb284/armyjunk1/Wright-Patterson%20AF%20Museum/Early%20Years/0151.jpg [accessed 15 November 2016].
- 8. USN version of Fledgling as trainer. http://aerofiles.com/_curtx.html [accessed 12 April 2024].
- 9. https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/DC-130_mounted_Firebees_DN-SC-85-06043.jpg/220px-DC-130_mounted_Firebees_DN-SC-85-06043.jpg [accessed 15 April 2024].
- 10. Adamski M., Rajchel J. Unmanned Aerial Vehicles, Part I. Characteristics and Use. Dęblin: Air Force Academy; 2013 [in Polish].
- 11. Mastiff. http://www.wiichat.com/attachments/usmc-mastiff-iii-uav-jpg.4627.jpg?/ [accessed 15 May 2024].
- 12. http://www.iai.co.il/2013/36755-43199-en/Media-Room.aspx [accessed 15 May 2024].
- 13. http://www.safran-electronics-defense.com/sites/sagem/files/styles/landscape_medium/public/thumbnails/image/1996_1er_vol_du_drone_crecerelle.jpg?itok=M3y8laqv [accessed 15 May 2024].
- 14. https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Barracuda_av_dr.jpg/1280px-Barracuda_av_dr.jpg [accessed 15 May 2024].
- 15. https://www.dassault-aviation.com/en/defense/neuron/ [accessed 15 May 2024].
- 16. http://www.uasvision.com/wp-content/uploads/2013/05/predator.jpg [accessed 16 May 2016].
- 17. http://www.northropgrumman.com/Photos/pgL_GH-10020_021.jpg [accessed 15 May 2024].
- 18. Mazur M., McMillan J., Wisniewski A. Clarity from above. PwC global report on the commercial applications of drone technology. Tech. report, PricewaterhouseCoopers, 2016.
- 19. Kljuno E., Catovic A. A generalized model for estimation of aerodynamic forces and moments for irregularly shaped bodies. Def Technol 2019;15(3):369–389. https://doi.org/10.1016/j.dt.2018.09.006.
- 20. Kiciński R, Jurczak J. Submarine Resistance Force Characteristics Determination after Modification of Depth Rudder System. Adv. Sci. Technol. Res. J. 2021;15(1):1–9. https://doi.org/10.12913/22998624/125186.
- 21. Grządziela A. P., Kraskowski M., Król P., Szturomski B. J., Kiciński R. Experimental Validation of an FEM Model Based on Lifting Theory Applied to Propeller Design Software. Polish Maritime Research. https://doi.org/10.2478/pomr-2024-0022.
- 22. Huang X., Cheng C, Zhang X. Machine learning and numerical investigation on drag reduction of underwater serial multi-projectiles. Def Technol 2022;18(2):229–237. https://doi.org/10.1016/j.dt.2020.12.002.
- 23. Ma N, Liu L, Meng F, Meng J. Structural design and modal behaviors analysis of a new swept baffled inflatable wing. Def Technol 2023;24:382–398. https://doi.org/10.1016/j.dt.2023.02.004.
- 24. Ernst J., Tsach S., Penn D. Evolution of the heron UAV family. American Institute of Aeronautics and Astronautics, Inc., Virginia, 2005.
- 25. http://www.avionslegendaires.net/wp-content/uploads/images/avion_militaire/Gheron-index.jpg [accessed 21 May 2024].
- 26. http://cdn.i24news.tv/upload/image/_Super%20Heron.jpg [accessed 21 May 2024].
- 27. Arjomandi M. Aeronautical engineering classification of unmanned aerial vehicles. 2016. https://web.archive.org/web/20121021021237/http://personal.mecheng.adelaide.edu.au/maziar.arjomandi/aeronautical%20engineering%20projects/2006/group9.pdf [accessed 8 February 2025].
- 28. Domino J, Czyż Z, Bąbel R. Aerodynamic Load Measurements on the Example of Diamond DA42 Model Aircraft. IEEE 10th International Workshop on Metrology for Aerospace, 2023;704–708. https://doi.org/10.1109/MetroAeroSpace57412.2023.10189976.
- 29. Milewski S., Szturomski B., Kicinski R. Strength Analysis of the Marine Weapon’s Construction. NASE MORE. 2021;68(3):167–174. https://doi.org/10.17818/NM/2021/3.4.
- 30. Kicinski R, Szturomski B., Marchel L. A more reasonable model for submarines rescues seat strength analysis. Ocean Engineering. 237. https://doi.org/10.1016/j.oceaneng.2021.109580.
- 31. Stryczniewicz K, Stryczniewicz K, Szczepaniak R. Modelling hydrodynamic characteristics of the underwater glider based on Computational Fluid Dynamics. 2019 IOP Conf Ser: Mater Sci Eng. 2019;710:012012. https://doi.org/10.1088/1757-899X/710/1/012012.
- 32. Szczepaniak R, Bąbel R, Grzywacz A, Stryczniewicz W, Kowaleczko G. The effect of using the kline-fogleman modification upon the coefficient characteristics of aerodynamic forces in the airfoil. J Kones 2018;25(2):349–355. https://doi.org/10.5604/01.3001.0012.2854.
- 33. Zahorski T, Konopka B, Stryczniewicz W, Bąbel R, Szczepaniak R. CFD Analysis of the Influence of Flaps Extension on Aerodynamic Characteristics of M-28 Bryza Aircraft. J Kones 2016;23(1):353–360.
- 34. Ganesan T, Jayarajan N. Aerodynamic Analysis of Mathematically Modelled Propeller for Small UAV Using CFD in Different Temperature Conditions. Stroj vestnik-J Mech E, 2023;69(11–12):444–454. http://dx.doi.org/10.5545/sv-jme.2023.601.
- 35. Stryczniewicz W, Placek R, Szczepaniak R. Piv Measurements of Flow Separation Over Laminar Airfoil at Transonic Speeds. J Kones 2016;23(1):329–336.
- 36. Czyż Z, Jakubczak P, Podolak P, Skiba K, Karpiński P, Droździel-Jurkiewicz M, Wendeker M. Deformation measurement system for UAV components to improve their safe operation. Eksploat Niezawod-Maintenance and Reliability 2023;25(4). http://doi.org/10.17531/ein/172358.
- 37. Filipiak D, Szczepaniak R, Zahorski T, Bąbel R, Stabryn S, Stryczniewicz W. Flow visualization over an airfoil with flight control surfaces in a water tunnel. Transactions on Aerospace Research 2017;246(1):63–78.
- 38. Czyż Z, Podolak P, Skiba K, Jakubczak P, Karpiński P, Różyło P, Droździel-Jurkiewicz M. Autogyro Main Rotor Blade Strength Tests. IEEE 10th International Workshop on Metrology for Aerospace 2023;199–204. https://doi.org/10.1109/MetroAeroSpace57412.2023.10190031.
- 39. Brazhenko V, Qiu Y, Cai J, Wang D. Thermal Evaluation of Multilayer Wall with a Hat-Stringer in Aircraft Design. Stroj vestnik-J Mech E, 2022;68(10):635–641. http://dx.doi.org/10.5545/sv-jme.2022.222.
- 40. Bagul P, Rana ZA, Jenkins KW, Konozsy L. Computational engineering analysis of external geometrical modifications on MQ-1 unmanned combat aerial vehicle. Chinese J Aeronaut 2020;33(4):1154–1165. https://doi.org/10.1016/j.cja.2019.12.027.
- 41. Raymer D. P. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Aerodynamics - Education Series, 5th Edition, 2012.
- 42. Anderson J., Bowden M. Introduction to Flight ISE - 9th Edition. McGraw-Hill Education, 2021.
- 43. Haoqin S., Xiaoxiang B., Jianhua L., Kai L., Mengxi C., Jing S. Calculation and Analysis on Stealth and Aerodynamics Characteristics of a Medium Altitude Long Endurance UAV. Procedia Engineering 2015;99:111–115.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c108ec4-1dce-4672-87c5-892f136375cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.