Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Progressive filtering is a simple way to perform hierarchical classification, inspired by the behavior that most humans put into practice while attempting to categorize an item according to an underlying taxonomy. Each node of the taxonomy being associated with a different category, one may visualize the categorization process by looking at the item going downwards through all the nodes that accept it as belonging to the corresponding category. This paper is aimed at modeling the progressive filtering technique from a probabilistic perspective. As a result, the designer of a system based on progressive filtering should be facilitated in the task of devising, training, and testing it.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
285--320
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
- Dept. of Electrical and Electronic Engineering University of Cagliari Piazza d’Armi, 09123, Cagliari, Italy
Bibliografia
- [1] Addis, A., Armano, G., Vargiu, E.: Assessing Progressive Filtering to Perform Hierarchical Text Categorization in Presence of Input Imbalance, Proceedings of International Conference on Knowledge Discovery and Information Retrieval (KDIR 2010), 2010.
- [2] Addis, A., Armano, G., Vargiu, E.: Experimental Assessment of a Threshold Selection Algorithm for Tuning Classifiers in the Field of Hierarchical Text Categorization, Proceedings of 17th RCRA International Workshop on Experimental evaluation of algorithms for solving problems with combinatorial explosion, 2010.
- [3] Addis, A., Armano, G., Vargiu, E.: Using Progressive Filtering to Deal with Information Overload, 7th International Workshop on Text-based Information Retrieval, 2010.
- [4] Barutcuoglu, Z., Schapire, R. E., Troyanskaya, O. G.: Hierarchical multi-label prediction of gene function, Bioinformatics, 22, April 2006, 830–836, ISSN 1367-4803.
- [5] Bennett, P. N., Nguyen, N.: Refined experts: improving classification in large taxonomies, SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, ACM, New York, NY, USA, 2009, ISBN 978-1-60558-483-6.
- [6] Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines, Proc. of the 13th ACM Int. Conference on Information and knowledge Management (CIKM ’04), ACM, New York, NY, USA, 2004.
- [7] Ceci, M.: Hierarchical Text Categorization in a Transductive Setting, ICDMW ’08: Proceedings of the 2008 IEEE International Conference on Data Mining Workshops, IEEE Computer Society,Washington, DC, USA, 2008, ISBN 978-0-7695-3503-6.
- [8] Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study, Journal of Intelligent Information Systems, 28(1), 2007, 37–78.
- [9] Cerri, R., Barros, R. C., de Carvalho, A. C.: Hierarchical Multi-Label Classification Using Local Neural Networks, Journal of Computer and System Sciences, 80(1), 2014, 39–56.
- [10] Cerri, R., Barros, R. C., de Carvalho, A. C. P. L. F.: A genetic algorithm for Hierarchical Multi-Label Classification, Proc. of the 27th Annual ACM Symposium on Applied Computing (SAC’12), 2012.
- [11] Chakrabarti, S., Dom, B., Agrawal, R., Raghavan, P.: Using Taxonomy, Discriminants, and Signatures for Navigating in Text Databases, Proceedings of the 23rd VLDB Conference, 1997.
- [12] Chen, Y., Crawford, M., Ghosh, J.: Integrating Support Vector Machines in a Hierarchical Output Space Decomposition Framework, IEEE Int. Geoscience and Remote Sensing Symposium, II, 2004.
- [13] Cheng, C., Tang, J., Fu, A., King, I.: Hierarchical Classification of Documents with Error Control, PAKDD 2001 - Proceedings of 5th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, 2035, 2001.
- [14] Clare, A., King, R.: Predicting gene function in Saccharomyces cerevisiae, Bioinformatics, 7(19 (suppl. 2)), 2005, 42–49, ISSN 1931-0145.
- [15] D’Alessio, S., Murray, K., Schiaffino, R.: The Effect of Using Hierarchical Classifiers in Text Categorization, Proceedings of of the 6th International Conference on Recherche d’Information Assistee par Ordinateur (RIAO), 2000.
- [16] Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis, Journal of the American Society for Information Science, 41(6), 1990, 391–407.
- [17] Dekel, O., Keshet, J., Singer, Y.: Large Margin Hierarchical Classification, Proceedings of the Twenty-First International Conference on Machine Learning, 2004.
- [18] Dumais, S. T., Chen, H.: Hierarchical classification of Web content, Proceedings of SIGIR-00, 23rd ACM International Conference on Research and Development in Information Retrieval (N. J. Belkin, P. Ingwersen, M.-K. Leong, Eds.), ACM Press, New York, US, Athens, GR, 2000.
- [19] Erik Wiener, Jan O. Pedersen, A. S. W.: A Neural Network Approach to Topic Spotting, Proceedings of 4th Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, US, 1995.
- [20] Esuli, A., Fagni, T., Sebastiani, F.: Boosting multi-label hierarchical text categorization, Information Retrieval, 11(4), 2008, 287–313, ISSN 1386-4564.
- [21] Fisher, R. A.: The Use of Multiple Measurements in Taxonomic Problems, IEEE Transactions on Knowledge and Data Engineering, 7(2), 1936, 179188.
- [22] Frommholz, I.: Categorizing Web Documents in Hierarchical Catalogues, Proceedings of ECIR-01, 23rd European Colloquium on Information Retrieval Research, 2001.
- [23] Holden, N., Freitas, A. A.: A Hybrid Particle Swarm/Ant Colony Algorithm for the Classification of Hierarchical Biological Data, Proc. of the IEEE Swarm Intelligence Symposium (SIS’05), 2005.
- [24] Holden, N., Freitas, A. A.: Improving the Performance of Hierarchical Classification with Swarm Intelligence, Proc. of the 6th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EVOBio’08), 2008.
- [25] Hotelling, H.: Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24, 1933, 417–441 and 498–520.
- [26] Hotelling, H.: Relations Between Two Sets of Variates, Biometrika, 28(3-4), 1933, 321377.
- [27] Ipeirotis, P., Gravano, L., Sahami, M.: Probe, count, and classify: categorizing hidden web databases, SIGMOD Rec., 30(2), 2001, 67–78.
- [28] Itskevitch, J.: Automatic Hierarchical Email Classification Using Association Rules, Ph.D. Thesis, Master’s thesis, Simon Fraser University, 2001.
- [29] Kiritchenko, S.: Hierarchical text categorization and its application to bioinformatics, Ph.D. Thesis, Univ. of Ottawa, Canada, Ottawa, Ont., Canada, Canada, 2006.
- [30] Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting structured outputs, Pattern Recognition, 46(3), 2013, 817–833.
- [31] Koller, D., Sahami, M.: Hierarchically classifying documents using very few words, Proceedings of ICML-97, 14th International Conference on Machine Learning (D. H. Fisher, Ed.), Morgan Kaufmann Publishers, San Francisco, US, Nashville, US, 1997.
- [32] Kriegel, H., Kroger, P., Pryakhin, A., Schubert, M.: Using support vector machines for classifying large sets of multi-represented objects, Proc. of the SIAM Int. Conference on Data Mining, 2004.
- [33] Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric attributes, Proc. IEEE 7th International Conference on Tools with Artificial Intelligence, 1995.
- [34] McCallum, A. K., Rosenfeld, R., Mitchell, T. M., Ng, A. Y.: Improving text classification by shrinkage in a hierarchy of classes, Proceedings of ICML-98, 15th International Conference on Machine Learning (J. W.Shavlik, Ed.), Morgan Kaufmann Publishers, San Francisco, US, Madison, US, 1998.
- [35] Ng, H. T., Goh, W. B., Low, K. L.: Feature selection, perceptron learning, and a usability case study for text categorization, Proceedings of SIGIR-97, 20th ACM International Conference on Research and Development in Information Retrieval (N. J. Belkin, A. D. Narasimhalu, P. Willett, Eds.), ACM Press, New York, US, Philadelphia, US, 1997.
- [36] Otero, F. E. B., Freitas, A. A., Johnson, C. G.: A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms, Proc. of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EVOBio’09), 5483, Springer-Verlag, 2009.
- [37] Ruiz, M. E., Srinivasan, P.: Hierarchical Text Categorization Using Neural Networks, Information Retrieval, 5(1), 2002, 87–118.
- [38] Scholkopf, B., Smola, A., Muller, K.-R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, 10(5), 1998, 1299–1319.
- [39] Silla, C. J., Freitas, A.: A survey of hierarchical classification across different application domains, Journal of Data Mining and Knowledge Discovery, 22(1–2), 2010, 31–72.
- [40] Stojanova, D., Ceci, M., Malerba, D., Dzeroski, S.: Using PPI network autocorrelation in hierarchical multilabel classification trees for gene function prediction, BMC Bioinformatics, 14:285, 2013, 1–18.
- [41] Sun, A., Lim, E.: Hierarchical Text Classification and Evaluation, ICDM ’01: Proceedings of the 2001 IEEE International Conference on Data Mining, IEEE Computer Society, Washington, DC, USA, 2001.
- [42] Sun, A., Lim, E., Ng,W., Srivastava, J.: Blocking reduction strategies in hierarchical text classification, IEEE Transactions on Knowledge and Data Engineering, 16(10), 2004, 1305–1308.
- [43] Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces, Proc. of the 21st Int. Conference on Machine learning (ICML’04), ACM, New York, NY, USA, 2004.
- [44] Valentini, G.: True path Rule Hierarchical Ensembles for Genome-Wide Gene Prediction, IEEE/ACM Trans. on Comp. Biology and Bioinformatics, 8(3), 2011, 832–847.
- [45] Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification, Machine Learning, 73(2), 2008, 185–214.
- [46] Wang, K., Senqiang, K. W.: Hierarchical Classification of Real Life Documents, Proc. of the 1st SIAM Int. Conference on Data Mining, 2001.
- [47] Wang, K., Zhou, S., Liew, S.: Building Hierarchical Classifiers Using Class Proximity, Proceedings of the 25th VLDB Conference, Morgan Kaufmann Publishers, 1999.
- [48] Weigend, A. S., Wiener, E. D., Pedersen, J. O.: Exploiting Hierarchy in Text Categorization, Information Retrieval, 1(3), 1999, 193–216.
- [49] Wibowo, W., Williams, H.: Strategies for Minimising Errors in Hierarchical Web Categorisation, Proceedings of the International Conference on Information and Knowledge Management (CIKM), 2002.
- [50] Wibowo, W., Williams, H. E.: Simple and accurate feature selection for hierarchical categorisation, DocEng ’02: Proceedings of the 2002 ACM symposium on Document engineering, ACM, New York, NY, USA, 2002.
- [51] Wu, F., Zhang, J., Honavar, V.: Learning Classifiers Using Hierarchically Structured Class Taxonomies, Proc. of the Symp. on Abstraction, Reformulation, and Approximation, 3607, Springer Verlag, 2005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c107a89-9405-443c-a416-b5616faf9b5f