PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of the core size on light propagation in photonic liquid crystal fibers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper analyses of mode distribution, confinement and experimental losses of the photonic crystal fibers with different core sizes infiltrated with liquid crystal are presented. Four types of fibers are com-pared: with single-, seven-, nineteen-and thirty seven solid rods forming the core in the same hexagonal lattice of seven “rings” of unit cells (rods or capillaries). The experimental results confirming the influence of the core diameter on light propagation are also included. The diameter of cores determines not only the number of modes in the photonic liquid crystal fiber but also is correlated with experimentally observed attenuation. For fibers with larger cores confinement losses are expected to be higher, but the measured attenuation is smaller because the impact of liquid crystal material losses and scattering is smaller.
Rocznik
Strony
198--204
Opis fizyczny
Bibliogr. 36 poz., il., rys., wykr.
Twórcy
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Maria Sklodowska-Curie University, Pl. Marii Curie-Skłodowskiej 3/607, 20-031 Lublin, Poland
Bibliografia
  • [1] P. St. J. Russell, Photonic-Crystal Fibers, J. Lightwave Technol 24 (12) (2006) (4729–4749).
  • [2] T.P. White, R.C. McPhedran, C. Martijnde Sterke, N.M. Litchinitser, B.J. Eggleton, Resonance and scattering in microstructured optical fibers, Opt. Lett. 27 (22) (2002) 1977–1979.
  • [3] J. Laegsgaard, Gap formation and guided modes in photonic bandgap fibres with high-index rods, J. Opt. A–Pure Appl. Opt. 6 (8) (2004) 798–804.
  • [4] S. Ertman, A.H. Rodriguez, M.M. Tefelska, M.S. Chychlowski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, R. Dabrowski, T.R. Wolinski, Index guiding photonic liquid crystal fibers for practical applications, J. Lightwave Technol. 30 (8) (2012) 1208–1214.
  • [5] S. Février, R. Jamier, J.-M. Blondy, S.L. Semjonov, M.E. Likhachev, M.M. Bubnov, E.M. Dianov, V.F. Khopin, M.Y. Salganskii, A.N. Guryanov, Low-loss single mode large mode area all-silica photonic bandgap fiber, Opt. Express 14 (2) (2006) 562–569.
  • [6] A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, H. Bartelt, Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range, Opt. Express 16 (23) (2008) 19375–19381.
  • [7] T.T. Alkeskjold, A. Bjarklev, Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter, Opt. Lett. 32 (12) (2007) 1707–1709.
  • [8] M.M. Tefelska, T.R. Woliński, S. Ertman, K. Mileńko, R. Łączkowski, A. Siarkowska, A.W. Domański, Electric field sensors based on micro-electrodes systems with photonic liquid crystal fibers, J. Lightwave Technol. 33 (12) (2014) 1–7.
  • [9] W.-H. Ding, Y. Jiang, Miniature photonic crystal fiber sensor for high-temperature measurement, IEEE Sens. J. 14 (3) (2014) 786–789.
  • [10] S. Ertman, P. Lesiak, T. Woliński, Optofluidic photonic crystal fiber-based sensors, J. Lightwave Technol. PP (99) (2016) 1.
  • [11] J. Villatoro, J. Zubia, New perspectives in photonic crystal fibre sensors, Opt. Laser Technol. 78 (A) (2016) 67–75.
  • [12] Iam-Choon Khoo, Liquid Crystals, second edition, John Wiley & Sons, 2007, 2017.
  • [13] M. Murawski, L.R. Jaroszewicz, K. Stasiewicz, A photonic crystal fiber splice with a standard single mode fiber, Photon. Lett. Poland 1 (3) (2009) 115–117.
  • [14] M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg, H. Simonsen, Low-loss photonic crystal fibers for transmission systems and their dispersion properties, Opt. Express 12 (7) (2004) 1372–1376.
  • [15] K. Tajima, J. Zhou, K. Nakajima, K. Sato, Ultralow loss and long length photonic crystal fiber, J. Lightwave Technol. 22 (1) (2004) (7).
  • [16] J.A. Sánchez-Martín, M. Ángel Rebolledo, J. Miguel Álvarez, J.A. Vallés, A. Díez, M.V. Andrés, Erbium-doped-silica photonic crystal fiber characterization method: description and experimental check, IEEE J. Quantum Electron. 46 (8) (2010) 1145–1152.
  • [17] W. Chen, S. Li, P. Lu, Erbium-doped photonic crystal fiber: fabrication and its gaining characteristics, Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics (2009) 1–2.
  • [18] T.R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A.W. Domański, E. Nowinowski-Kruszelnicki, R. Dąbrowski, Tunable highly birefringent solid-core photonic liquid crystal fibers, Opt. Quantum Electron. 39 (2007) 1021–1032.
  • [19] L. Wei, T. Alkeskjold, A. Bjarklev, Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal, Appl. Phys. Lett. 96 (24) (2010) (241104-241104-3).
  • [20] L. Scolari, T.T. Alkeskjold, J. Riishede, A. Bjarklev, D.S. Hermann, M. Anawati, D. Nielsen, P. Bassi, Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers, Opt. Express 13(19) (2005) 7483–7496.
  • [21] B.T. Kuhlmey, B.J. Eggleton, D.K.C. Wu, Fluid-filled solid-core photonic bandgap fibers, J. Lightwave Technol. 27 (11) (2009).
  • [22] A. Lorenz, R. Schuhmann, H.-S. Kitzerow, Switchable waveguiding in two liquid crystal-filled photonic crystal fibers, Appl. Opt. 49 (2010) 3846–3853, http://dx.doi.org/10.1364/AO.49.003846.
  • [23] A. Lorenz, R. Schuhmann, H.-S. Kitzerow, Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model, Opt. Express 18 (2010)3519–3530, http://dx.doi.org/10.1364/OE.18.003519.
  • [24] A. Lorenz, H.-S. Kitzerow, Efficient electro-optic switching in a photonic liquid crystal fiber, Appl. Phys. Lett. 98 (2011) 241106, http://dx.doi.org/10.1063/1.3599848.
  • [25] M. Wahle, J. Ebel, D. Wilkes, H.-S. Kitzerow, Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers, Opt. Express 24 (20) (2016) 22718–22729, http://dx.doi.org/10.1364/OE.22.000262.
  • [26] M. Wahle, H.-S. Kitzerow, Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal, Appl. Phys. Lett. 107 (2015) 201114, http://dx.doi.org/10.1063/1.4936086.
  • [27] M. Wahle, H.-S. Kitzerow, Measurement of group velocity dispersion in a solid-core photonic crystal fiber filled with a nematic liquid crystal, Opt. Lett. 39 (16) (2014) 4816–4819, http://dx.doi.org/10.1364/ol.39.004816
  • [28] M.M. Tefelska, S. Ertman, T.R. Wolinski, P. Mergo, R. Dabrowski, Large area multimode photonic band-gap propagation in photonic liquid-crystal fiber, IEEE Photon. Technol. Lett. 24 (8) (2012) 631–633.
  • [29] COMSOL 3.5a, Comsol Multiphysics [Online], 2017, Available at: http://www.comsol.com.
  • [30] S. Ertman, T.R. Wolinski, J. Beeckman, K. Neyts, P.J.M. Vanbrabant, R. James, F.A. Fernández, Numerical simulations of electrically induced birefringence in photonic liquid crystal fibers, Acta Phys. Pol. A 118 (6) (2010) 1113–1117.
  • [31] R. Dabrowski, J. Dziaduszek, Z. Stolarz, J. Kedzierski, Liquid crystalline materials with low ordinary index, J. Opt. Technol. 72 (9) (2005) 662–667.
  • [32] R. Dabrowski, New liquid crystalline materials for photonic applications, Mol. Cryst. Liq. Cryst. 421 (1) (2005) 1–21.
  • [33] I.H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55 (10) (1965) 1205.
  • [34] A. Hochman, Y. Leviatan, Calculation of confinement losses in photonic crystal fibers by use of a source-model technique, J. Opt. Soc. Am. B 22 (2005) 474–480.
  • [35] M.M. Tefelska, S. Ertman, T. Wolinski, P. Mergo, R. Dabrowski, Attenuation of the photonic liquid crystal fibers with various core diameters, Proc. SPIE 8794 (2013) 879429.
  • [36] M.M. Tefelska, Sławomir Ertman, Tomasz R. Woliński, Roman Dąbrowski, Paweł Mergo, Tunable filter based on two cascaded photonic liquid crystal fibers, Photon. Lett. Poland 5 (1) (2013) 14–16.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c0e0bfc-c4e9-4526-ba0c-6c522fa739c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.