PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dimension results related to the St. Petersburg game

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Sn be the total gain in n repeated St. Petersburg games. It is known that n−1(Sn − n log2 n) converges in distribution along certain geometrically increasing subsequences and its possible limiting random variables can be parametrized as Y (t) with t ∈ [1/2, 1]. We determine the Hausdorff and box-counting dimension of the range and the graph for almost all sample paths of the stochastic process {Y(t)}t∈[1/2, 1]. The results are compared to the fractal dimension of the corresponding limiting objects when gains are given by a deterministic sequence initiated by Hugo Steinhaus.
Rocznik
Strony
97--117
Opis fizyczny
Bibliogr. 41 poz., wykr.
Twórcy
autor
  • Institute of Mathematics, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
autor
  • Institute of Mathematics, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
Bibliografia
  • [1] A. Adler, Generalized one-sided laws of the iterated logarithm for random variables barely with or without finite mean, J. Theoret. Probab. 3 (1990), pp. 587-597.
  • [2] R. M. Blumenthal and R. K. Getoor, A dimension theorem for sample functions of stable processes, Illinois J. Math. 4 (1960), pp. 370-375.
  • [3] Y. S. Chow and H. Robbins, On sums of independent random variables with infinite moments and “fair” games, Proc. Natl. Acad. Sci. USA 47 (1961), pp. 330-335.
  • [4] S. Csörgő, Rates of merge in generalized St. Petersburg games, Acta Sci. Math. (Szeged) 68 (2002), pp. 815-847.
  • [5] S. Csörgő, Merging asymptotic expansions in generalized St. Petersburg games, Acta Sci. Math. (Szeged) 73 (2007), pp. 297-331.
  • [6] S. Csörgő, Probabilistic approach to limit theorems for the St. Petersburg game, Acta Sci. Math. (Szeged) 76 (2010), pp. 233-350.
  • [7] S. Csörgő and R. Dodunekova, Limit theorems for the Petersburg game, in: Sums, Trimmed Sums and Extremes, M. G. Hahn et al. (Eds.), Progr. Probab., Vol. 23, Birkhäuser, Boston 1991, pp. 285-315.
  • [8] S. Csörgő and P. Kevei, Merging asymptotic expansions for cooperative gamblers in generalized St. Petersburg games, Acta Math. Hungar. 121 (2008), pp. 119-156.
  • [9] S. Csörgő and G. Simons, On Steinhaus’ resolution of the St. Petersburg paradox, Probab. Math. Statist. 14 (1993), pp. 157-172.
  • [10] S. Csörgő and G. Simons, A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games, Statist. Probab. Lett. 26 (1996), pp. 65-73.
  • [11] S. Csörgő and G. Simons, St. Petersburg games with the largest gains withheld, Statist. Probab. Lett. 77 (2007), pp. 1185-1189.
  • [12] J. Dutka, On the St. Petersburg paradox, Arch. Hist. Exact Sci. 39 (1988), pp. 13-39.
  • [13] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge 1985.
  • [14] K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988), pp. 339-350.
  • [15] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester 1990.
  • [16] K. J. Falconer, The dimension of self-affine fractals II, Math. Proc. Cambridge Philos. Soc. 111 (1992), pp. 169-179.
  • [17] K. J. Falconer, Dimension of self-affine sets: A survey, in: Further Developments in Fractals and Related Fields, J. Barral and S. Seuret (Eds.), Trends Math., Vol. 13, Birkhäuser, Basel 2013, pp. 115-134.
  • [18] I. Fazekas, Merging to semistable processes, Theory Probab. Appl. 56 (2012), pp. 621-633.
  • [19] W. Feller, Note on the law of large numbers and “fair” games, Ann. Math. Statist. 16 (1945), pp. 301-304.
  • [20] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, third edition, Wiley, New York 1968.
  • [21] A. Gut, Limit theorems for a generalized St. Petersburg game, J. Appl. Probab. 47 (2011), pp. 752-760. Correction (2013), http://www2.math.uu.se/˜allan/86correction.pdf.
  • [22] J. Hawkes, Measure function properties of the asymmetric Cauchy process, Mathematika 17 (1970), pp. 68-78.
  • [23] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), pp. 713-747.
  • [24] G. Jorland, The Saint Petersburg paradox 1713-1937, in: The Probabilistic Revolution, Volume 1: Ideas in History, L. Krüger et al. (Eds.), MIT Press, Cambridge, MA, 1987, pp. 157-190.
  • [25] J.-P. Kahane, Some Random Series of Functions, second edition, Cambridge University Press, Cambridge 1985.
  • [26] O. Kallenberg, Foundations of Modern Probability, Springer, New York 1997.
  • [27] P. Kern and L. Wedrich, The Hausdorff dimension of operator semistable Lévy processes, J. Theoret. Probab. (2013), to appear.
  • [28] A. Martin-Löf, A limit theorem which clarifies the “Petersburg paradox”, J. Appl. Probab. 22 (1985), pp. 634-643.
  • [29] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge 1995.
  • [30] M. M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors, Wiley, New York 2001.
  • [31] M. M. Meerschaert and Y. Xiao, Dimension results for sample paths of operator stable Lévy processes, Stochastic Process. Appl. 115 (2005), pp. 55-75.
  • [32] G. Pap, The accuracy of merging approximations in generalized St. Petersburg games, J. Theoret. Probab. 24 (2011), pp. 240-270.
  • [33] W. E. Pruitt and S. J. Taylor, Sample path properties of processes with stable components, Z. Wahrsch. verw. Gebiete 12 (1969), pp. 267-289.
  • [34] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.
  • [35] H. Steinhaus, The so-called Petersburg paradox, Colloq. Math. 2 (1949), pp. 56-58.
  • [36] S. J. Taylor, Sample path properties of a transient stable process, J. Math. Mech. 16 (1967), pp. 1229-1246.
  • [37] I. Vardi, The limiting distribution of the St. Petersburg game, Proc. Amer. Math. Soc. 123 (1995), pp. 2875-2882.
  • [38] I. Vardi, The St. Petersburg game and continued fractions, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), pp. 913-918.
  • [39] W. Whitt, Some useful functions for functional limit theorems, Math. Oper. Res. 5 (1980), pp. 67-85.
  • [40] W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York 2002.
  • [41] Y. Xiao, Random fractals and Markov processes, in: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, M. L. Lapidus and M. van Frankenhuijsen (Eds.), AMS, Providence 2004, pp. 261-338.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c0bab48-3de6-451a-8fec-66d481b44fdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.