Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mass Spring Systems (MSS) are often used to simulate the behavior of deformable objects, for example in computer graphics (modeling clothes for virtual characters) or in medicine (surgical simulators that facilitate the planning of surgical operations) due to their simplicity and speed of calculation. This paper presents a new, two-parameter method (TP MSS) of determining the values of spring coefficients for this model. This approach can be distinguished by a constant parameter which is calculated once at the beginning of the simulation, and a variable parameter that must be updated at each simulation step. The value of this variable parameter depends on the shape changes of the elements forming the mesh of the simulated object. The considered mesh is built of elements in the shape of acute-angled triangles. The results obtained using the new model were compared to FEM simulations and the Van Gelder model. The simulation results for the new model were also compared with the results of the bubble inflation test.
Wydawca
Czasopismo
Rocznik
Tom
Strony
199--218
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
Bibliografia
- [1] J. Bender, M. Muller, M.A. Otaduy, M. Teschner, and M. Macklin. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6):228–251, 2014. doi: 10.1111/cgf.12346.
- [2] X. Provot. Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In: Proceedings of Graphics Interface '95, pages 147–154, Quebec, Canada, 1995. doi: 10.20380/GI1995.17.
- [3] T.I. Vassilev, B. Spanlang, and Y. Chrysanthou. Efficient cloth model and collisions detection for dressing virtual people. In: Proceeding of ACM/EG Games Technology, Hong Kong, 2001.
- [4] Z. Cao and B. He. Research of fast cloth simulation based on mass- spring model. In: Proceedings of the 2012 National Conference on Information Technology and Computer Science, pages 467–471, 2012. doi: 10.2991/citcs.2012.121.
- [5] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836, 2006. doi: 10.1111/j.1467-8659.2006.01000.x.
- [6] E. Basafa, F. Farahmand, and G. Vossoughi. A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery. Studies in Health Technology and Informatics, 132:23–25, 2008.
- [7] S. Xu, X. P. Liu, H. Zhang, and L. Hu. An improved realistic mass-spring model for surgery simulation. In: 2010 IEEE International Symposium on Haptic Audio Visual Environments and Games, Phoenix, USA, 2010. doi: 10.1109/HAVE.2010.5623989.
- [8] Y. Nimura, J. D. Qu, Y. Hayashi, M. Oda, T. Kitasaka, M. Hashizume, K. Misawa, and K. Mori. Pneumoperitoneum simulation based on mass-spring-damper models for laparoscopic surgical planning. Journal of Medical Imaging, 2(4):044004, 2015. doi: 10.1117/1.JMI.2.4.044004.
- [9] H. Dehghani Ashkezari, A. Mirbagheri, S. Behzadipour, and F. Farahmand. A mass-spring-damper model for real time simulation of the frictional grasping interactions between surgical tools and large organs. Scientia Iranica, 22(5):1833–1841, 2015.
- [10] B. Dong, J. Li, G. Yang, X. Cheng, and Q. Gang. A multi-component conical spring model of soft tissue in virtual surgery. IEEE Access, 8:146093–146104, 2020. doi: 10.1109/ACCESS.2020.3014730.
- [11] X. Zhang, J. Duan, W. Sun, T. Xu, and S.K. Jha. A three-stage cutting simulation system based on mass-spring model. Computer Modeling in Engineering & Sciences, 127(1):117–133, 2021. doi: 10.32604/cmes.2021.012034.
- [12] S. Tudruj and J. Piechna. Numerical analysis of the possibility of using an external air bag to protect a small urban vehicle during a collision. Archive of Mechanical Engineering, 59(3): 257–281, 2012. doi: 10.2478/v10180-012-0013-2.
- [13] J. Piechna, T. Janson, P. Sadowski, S. Tudruj, A. Piechna, and L. Rudniak. Numerical study of aerodynamic characteristics of sports car with movable flaps and deformable airbags. In: Proceedings of Automotive Simulation World Congress, Frankfurt, Germany, 2013.
- [14] A. Van Gelder. Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools, 3(2):21–41, 1998. doi: 10.1080/10867651.1998.10487490.
- [15] P. E. Hammer, M.S. Sacks, P.J. del Nido, and R.D. Howe. Mass-spring model for simulation of heart valve tissue mechanical behavior. Annals of Biomedical Engineering, 39(6):1668–679, 2011. doi: 10.1007/s10439-011-0278-5.
- [16] J. Louchet, X. Provo, and D. Crochemore. Evolutionary identification of cloth animation models. In: D. Terzopoulos, D. Thalmann, (eds) Computer Animation and Simulation'95, pages 44–54, Springer, 1995. doi: 10.1007/978-3-7091-9435-5_4.
- [17] K. Golec. Hybrid 3D Mass Spring System for Soft Tissue. Modeling and Simulation. Ph.D. Thesis, Université de Lyon, France, 2018.
- [18] V. Baudet, M. Beuve, F. Jaillet, B. Shariat, and F. Zara. Integrating tensile parameters. In WSCG’2009, 2009, hal-00994456.
- [19] B.A. Lloyd, G. Székely, and M. Harders. Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer, 13(5):1081–1094, 2007. doi: 10.1109/TVCG.2007.1055.
- [20] S. Natsupakpong and M.C. Çavusoglu. Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graphical Models, 72(6): 61–73, 2010. doi: 10.1016/j.gmod.2010.10.001.
- [21] W.P. Jackson. Characterization of Soft Polymers and Gels using the Pressure-Bulge Technique. Ph.D. Thesis, California Institute of Technology, Pasadena, USA, 2008.
- [22] L. Wanigasooriya. Mechanical Characterisation and Ram Extrusion of Wheat Flour Dough. Ph.D. Thesis, Imperial College London, UK, 2006.
- [23] P. Jaszak. Modelling of the rubber in Finite Element Method. Elastomery, 20(3):31–39, 2016. (in Polish).
- [24] R. Jakel. Analysis of hyperelastic materials with MECHANICA. Presentation for 2nd SAXSIM Technische Universität Chemnitz, Germany, 2010.
- [25] A. Ali, M. Hosseini, and B.B. Sahari. A review of constitutive models for rubber-like materials. American Journal of Engineering and Applied Sciences, 3(1):232–39, 2010. doi: 10.3844/ajeassp.2010.232.239.
- [26] P. Małkowski and Ł. Ostrowski. The methodology for the young modulus derivation for rocks and its value. Procedia Engineering, 191:134–141, 2017. doi: 10.1016/j.proeng.2017.05.164.
- [27] Ansys [Online]. Available: www.ansys.com.
- [28] M. Kot, H. Nagahashi, and P. Szymczak. Elastic moduli of simple mass spring models. The Visual Computer, 31:1339–1350, 2015. doi: 10.1007/s00371-014-1015-5.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c06c629-c287-483e-b41d-4ebc4efcf336