PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dual Pore Cathode Materials for Solid Oxide Fuel Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we developed the lanthanum strontium cobalt ferrite and it’s composite with yttrium iron cobaltite (mass ratio of 1:1) cathodes as a thin layer on Ce0.8Sm0.2O1.9 electrolyte. Two kinds of electrode pastes were prepared, with and without 6 mm polystyrene beads as an additional pore former. The performance of cathode materials was investigated by electrochemical impedance spectroscopy as a function of electrode morphology, oxygen partial pressure, potential, and temperature. The polarization resistance of the more porous electrodes was lower than those electrodes prepared without additional pore former in the whole potential range at 800°C, slightly lower at 700°C and 600°C. The addition of yttrium iron cobaltite decreased the performance of both types of cathodes. The lower polarization resistance of porous cathodes is due to the facilitated gas diffusion through their structure.
Twórcy
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Pl-30239 Kraków, Poland
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Pl-30239 Kraków, Poland
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Pl-30239 Kraków, Poland
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Pl-30239 Kraków, Poland
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Pl-30239 Kraków, Poland
autor
  • Research and Development Center of Technology for Industry, 59 Złota Str., 00-120 Warszawa, Poland
Bibliografia
  • [1] K. Hemmes, Fuel Cells, in R. E. White, B. E Conway, C. Vayenas (Eds.), Modern Aspects of Electrochemistry, Springer Vol. 37, Ch. 4 131-251 (2004). DOI: 10.1007/978-1-4419-9027-3_4
  • [2] S. P. S. Badwal, K. Foger, Ceram. Int. 22, 257-265 (1996). DOI: 10.1016/0272-8842(95)00101-8
  • [3] A. Jun, S. Yoo, O.-H. Gwon, J. Shin, G. Kim, Electrochim. Acta 89, 372-376 (2013). DOI: 10.1016/j.electacta.2012.11.002
  • [4] E. Bucher, W. Sitte, G. B. Caraman, V. A. Cherepanov, T. V. Aksenova, M. V. Ananyev, Solid State Ionics 177, 3109-3115 (2006). DOI: 10.1016/j.ssi.2006.07.062
  • [5] H. J. Hwang, J.-W. Moon, S. Lee, E. A. Lee, J. Power Sources 145, 243-248 (2005). DOI: 10.1016/j.jpowsour.2005.02.063
  • [6] M. Mosiałek, M. Dudek, J. Wojewoda-Budka, Arch. Metall. Mater. 58, 275-281 (2013). DOI: 10.2478/v10172-012-0185-2
  • [7] M. Sahibzada, S. J. Benson, R. A. Rudkin, J. A. Kilner, Solid State Ionics 113-115, 285-290 (1998). DOI: 10.1016/S0167-2738(98)00294-X
  • [8] J. Chen, F. Liang, B. Chi, J. Pu, S.P. Jiang, L. Jian, J. Power Sources 194, 275-280 (2009). DOI: 10.1016/j.jpowsour.2009.04.041
  • [9] Z. Liu, M. Liu, L. Yang, M. Liu, J. Ener. Chem. 22, 555-559 (2013). DOI: 10.1016/S2095-4956(13)60072-8
  • [10] X. Zhu, D. Ding, Y. Li, Z. Lü, W. Su, L. Zhen, Int. J. Hydrogen Energ. 38, 5375-5382 (2013). DOI: 10.1016/j.ijhydene.2013.02.091
  • [11] S. Lee, N. Miller, M. Staruch, K. Gerdes, M. Jain, A. Manivannan, Electrochim. Acta 56, 9904-9909 (2011). DOI: 10.1016/j.electacta.2011.08.060
  • [12] X. Lou, S. Wang, Z. Liu, L. Yang, M. Liu, Solid State Ionics 180, 1285-1289 (2009). DOI: 10.1016/j.ssi.2009.06.014
  • [13] J. Cui, J. Wang, W. Fan, Y. Wan, X. Zhang, G. Li, K. Wu, Y. Cheng, J. Zhou, Int. J. Hydrogen Energ. 42, 20164-20175 (2017). DOI: 10.1016/j.ijhydene.2017.05.109
  • [14] S. B. Adler, J. A. Lane, B. C. H. Steele, J. Electrochem. Soc. 143,3554-3564 , (1996). DOI: 10.1149/1.1837252
  • [15] X. J. Chen, S. H. Chan, K. A. Khor, Electrochim. Acta 49, 1851-1861 (2004). DOI: 10.1016/j.electacta.2003.12.015
  • [16] Anil V. Virkar, Jong Chen, Cameron W. Tanner, Jai-Woh Kim, Solid State Ionics 131, 189-198 (2000). DOI: 10.1016/S0167-2738(00)00633-0
  • [17] M. Mosiałek, M. Przybyła, M. Tatko, P. Nowak, M. Dudek, Arch. Metall. Mater. 58, 1337-1340 (2013). DOI: 10.2478/amm-2013-0170
  • [18] M. Mosiałek, A. Michna, M. Dziubaniuk, E. Bielańska, A. Kežionis; T. Šalkus, E. Kazakevičius, B. Bożek, A. Krawczyk, J. Wyrwa, A. F Orliukas, Electrochim. Acta 282, 427-436 (2018). DOI: 10.1016/j.electacta.2018.06.063
  • [19] ICDD PDF-4+ 2015 01-084-8433. Database, edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA. http://www.icdd.com/
  • [20] M. Mosiałek, M. Dudek, A. Michna, M. Tatko, A. Kędra, M. Zimowska, J. Solid State Electr. 18, 3011-3021 (2014). DOI: 10.1007/s10008-014-2457-4
  • [21] M. Mosiałek, M. Dudek, P. Nowak, R. P. Socha, G. Mordarski, E. Bielańska, Electrochim. Acta 104, 474-480 (2013). DOI: 10.1016/j.electacta.2013.01.117
  • [22] E. P. Murray, M. J. Sever, S. A. Barnett, Solid State Ionics 148, 27-34 (2002). DOI: 10.1016/S0167-2738(02)00102-9
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c0419ad-3c90-4819-9825-000c8f408a09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.