Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The phase jitter enables to assess quality of signals transmitted in a bi-directional, long-distance fibre optic link dedicated for dissemination of the time and frequency signals. In the paper, we are considering measurements of jitter using a phase detector the detected frequency signal and the reference signal are supplied to. To cover the wideband jitter spectrum the detected signal frequency is divided and - because of the aliasing process - higher spectral components are shifted down. We are also examining the influence of a residual jitter that occurs in the reference signal generated by filtering the jitter occurring in the same signal, whose phase fluctuations we intend to measure. Then, we are discussing the evaluation results, which were obtained by using the target fibre optic time and frequency transfer system.
Czasopismo
Rocznik
Tom
Strony
487--497
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. A. Mickiewicza 30, 30-059 Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. A. Mickiewicza 30, 30-059 Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. A. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
- [1] Riehle, F. (2017). Optical clock networks. Nature Photonics, 11(1), 25-31.
- [2] Kodet, J., Pánek, P., Procházka, I. (2016). Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability. Metrologia, 53(1), 18-26.
- [3] Predehl, K., Grosche, G., Raupach, S.M.F., Droste, S., Terra, O., Alnis, J., Legero, T., Hänsch, T.W., Udem, T., Holzwarth, R., Schnatz, H. (2012). A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science, 336(6080), 441-444.
- [4] Piester, D., Schnatz, H. (2009). Novel Techniques for Remote Time and Frequency Comparisons. PTB-Mittelungen/Spec. Issue, 119(2), 33-44.
- [5] Śliwczyński, Ł., Krehlik, P., Buczek, Ł., Lipiński, M. (2012). Frequency Transfer in Electronically Stabilized Fiber Optic Link Exploiting Bidirectional Optical Amplifiers. IEEE Trans. Instrum. Meas., 61(9), 2573-2580.
- [6] Lipiński, M., Krehlik, P., Śliwczyński, Ł., Buczek, Ł. (2016). Testing Time and Frequency Fiber-Optic Link Transfer by Hardware Emulation of Acoustic-Band Optical Noise. Metrol. Meas. Syst., 23(2), 309-316.
- [7] Śliwczyński, Ł., Krehlik, P., Kołodziej, J., Imlau, H., Ender, H., Schnatz, H., Piester, D., Bauch, A. (2017). Fiber-Optic Time Transfer for UTC-Traceable Synchronization for Telecom Networks. IEEE Commun. Stand. Mag., 1(1), 66-73.
- [8] Okamoto, T., Ito, F. (2014). Laser Phase Noise Characterization Using Parallel Linear Optical Sampling. J. Lightw. Technol., 32(18), 3119-3125.
- [9] Marshall, W.K., Crosignani, B., Yariv, A. (2000). Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber: exact theory. Optics Letters, 25(3), 165-167.
- [10] Cartaxo, A.V.T., Wedding, B., Idler, W. (1998). Influence of Fiber Nonlinearity on the Phase Noise to Intensity Noise Conversion in Fiber transmission: Theoretical and Experimental Analysis. J. Lightw. Technol., 16(7), 1187-1194.
- [11] Śliwczyński, Ł., Krehlik, P., Salwik, K. (2016). Real-time performance monitoring of fiber optic long-distance time and RF frequency transfer link. 2016 European Frequency and Time Forum (EFTF 2016), 4-5.
- [12] Śliwczyński, Ł., Kołodziej, J. (2013). Bidirectional Optical Amplification in Long-Distance Two-Way Fiber-Optic Time and Frequency Transfer Systems. IEEE Trans. Instrum. Meas., 62(1), 253-262.
- [13] Krehlik, P., Śliwczyński, Ł., Buczek, Ł., Kołodziej, J., Lipiński, M. (2016). ELSTAB - Fiber-Optic Time and Frequency Distribution Technology: A General Characterization and Fundamental Limits. IEEE Trans. Ultrason., Ferroelecrt., Freq. Control , 63(7), 993-1004.
- [14] Lance, A.L., Seal, W.D., Labaar, F. (1984). Phase Noise and AM Noise Measurements in the Frequency Domain. Infrared and Millimeter Waves., 11, 239-289.
- [15] Rubiola, E. (2009). Phase Noise and Frequency Stability in Oscillators. Cambridge University Press.
- [16] Bregni, S. (2002). Synchronization of Digital Telecommunications Networks . Chapter 7. John Willey & Sons, Ltd.
- [17] Razavi, B. (2003). Design of Integrated Circuits for Optical Communications. Chapters 2 and 6. McGraw-Hill.
- [18] Stein, S.R. (1985). Frequency and Time - Their Measurement and Characterization. Precision Frequency Control, 2, 191-416.
- [19] Calosso, C.E., Rubiola, E. (2013). The Sampling Theorem in Pi and Lambda Digital Frequency Dividers. EFTF/IFC, 2013 Joint, 960-962.
- [20] Banerjee, D. (2006). PLL Performance, Simulation and Design, 4th edition. http://www.ti.com.
- [21] Davenport, Jr., W. B., Root, W.L. (1987). An Introduction to the Theory of Random Signals and Noise. IEEE Press.
- [22] Razavi, B. (1996). Monolithic Phase-Locked Loops and Clock Recovery Circuits. Theory and Design. A Tutorial. John Willey & Sons, Ltd.
Uwagi
EN
1. This work was supported by Polish National Science Center under the decision DEC-2014/15/B/ST7/00471.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c00a520-4e35-499d-a6ee-58958e4ace42