PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Self-deployable tensegrity structures for adaptive morphing of helium-filled aerostats

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the authors propose, investigate, and discuss a concept of novel type of deployable helium-filled aerostat as a low-cost mean of transport. Internal construction of the aerostat is based on ultra-light tensegrity structure equipped with prestressed tensioned elements of controllable lengths. Such tensegrity structure allows for adaptive morphing of the aerostat understood as simultaneous controllable modifications of aerostat volume and shape during the flight. The controlled volume changes enable influencing buoyancy force and obtaining desired vertical motion during the ascending and descending process. In turn, external shape changes allow for lowering the aerodynamic drag and energy usage needed to uphold stable horizontal position or maintain the desired flight path. Moreover, such internal structure allows for convenient storage, transportation and deployment of the aerostat construction on the ground or in required point at the atmosphere. The article presents an analysis of the exemplary operational mission of the aerostat. The authors introduce the mechanical model capturing interaction of the internal tensegrity structure and aerostat envelope based on the finite-element method, as well as dynamic model allowing for simulation of the aerostat’s vertical and horizontal motion influenced by buoyancy and drag forces. Both these models are used to positively verify the feasibility of the proposed concept of deployable tensegrity-based aerostat with adaptive morphing and its efficiency in realization of the assumed flight mission.
Rocznik
Strony
399--416
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
autor
  • Institute of Vehicles and Construction Machinery, Warsaw University of Technology, Narbutta 84, 02-524 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • [1] Brayan T, Rava G. British Airships 1905–30. New York: Osprey Publishing, May 1, 2009. 48 pp. isbn: 184603387X. URL: https://www.ebook.de/de/product/8088559/british_airships_1905_30.html.
  • [2] Ege, L. Baloons and Airships. London: Blandford Press, 1974. URL: https://www.ebook.de/de/product/8088559/british_airships_1905_30.html.
  • [3] Chaplain CT et al. Future aerostat and airship investment decisions drive oversight and coordination needs. Tech. rep. GAO-13-81. United States Government Accountability Office, 2012. URL: https://www.gao.gov/assets/650/649661.pdf.
  • [4] Rees JJS (ed) Recent development efforts for military airships. Tech. rep. The Congress of the United States, Congressional Budget Office, 2011. URL: https://fas.org/irp/program/collect/cbo-airship.pdf.
  • [5] Saleh S, He W. New design simulation for a high-altitude dual-balloon system to extend lifetime and improve floating performance. Chin J Aeronaut. 2018;31(5):1109–18. https://doi.org/10.1016/j.cja.2018.03.009.
  • [6] D’Oliveira FA, de Melo FCL, Devezas TC. High-altitude platforms–present situation and technology trends. J Aerosp Technol Manag. 2016;8(3):249–62. https://doi.org/10.5028/jatm.v8i3.699.
  • [7] Smith S et al. “HiSentinel80: Flight of a high altitude airship”. 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than-Air Technology Conference. 2011. https://doi.org/10.2514/6.2011-6973.
  • [8] Jiang Y, Lv M, Li J. Station-keeping control design of double balloon system based on horizontal region constraints. Aerosp Sci Technol. 2020;100: 105792. https://doi.org/10.1016/j.ast.2020.105792.
  • [9] Liu J-M, Lu C-J, Xue L-P. Investigation of airship aeroelasticity using fluid-structure interaction. J Hydrodyn. 2008;20(2):164–71. https://doi.org/10.1016/s1001-6058(08)60042-6.
  • [10] Zhao S, et al. Change rules of a stratospheric airship’s envelope shape during ascent process. Chin J Aeronaut. 2017;30(2):752–8. https://doi.org/10.1016/j.cja.2017.02.017.
  • [11] Liao J, et al. A passive approach for adjusting the diurnal temperature difference of the envelope of stratospheric light aerostat. Aerosp Sci Technol. 2019;91:494–507. https://doi.org/10.1016/j.ast.2019.05.042.
  • [12] Hu Y, et al. Modal behaviors and influencing factors analysis of inflated membrane structures. Eng Struct. 2017;132:413–27. https://doi.org/10.1016/j.engstruct.2016.11.037.
  • [13] Szyszkowski W, Glockner PG. Spherical membranes subjected to vertical concentrated loads: an experimental study. Eng Struct. 1987;9(3):183–92. https://doi.org/10.1016/0141-0296(87)90014-9.
  • [14] Wang S, et al. Nonlinear 3D numerical computations for the square membrane versus experimental data. Eng Struct. 011;33(5):1828–37. https://doi.org/10.1016/j.engstruct.2011.02.023.
  • [15] Li Y, Nahon M, Sharf I. Dynamics modeling of flexible airships. 48th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2007, p 10. https://doi.org/10.2514/6.2007-2212.
  • [16] Li Y, Nahon M. Modeling and simulation of airship dynamics. J Guid Control Dyn. 2007;30(6):1691–700. https://doi.org/10.2514/1.29061.
  • [17] Zhao Y, Garrard W, Mueller J. Benefits of trajectory optimization in airship flights. AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit. American Institute of Aeronautics and Astronautics, 2004; 591–604. https://doi.org/10.2514/6.2004-6527.
  • [18] Zuo Z, et al. Three-dimensional path-following backstepping control for an underactuated stratospheric airship. IEEE Trans Aerosp Electron Syst. 2019;55(3):1483–97. https://doi.org/10.1109/taes.2018.2873054.
  • [19] Kahale E, Garcia PC, Bestaoui Y. Autonomous path tracking of a kinematic airship in presence of unknown gust. J Intell Robot Syst. 2012;69(1–4):431–46. https://doi.org/10.1007/s10846-012-9709-2.
  • [20] Mueller JB, Zhao YJ, Garrard WL. Optimal ascent trajectories for stratospheric airships using wind energy. J Guid Control Dyn.2009;32(4):1232–45. https://doi.org/10.2514/1.41270.
  • [21] Yongmei W et al. Trajectory tracking of a high altitude unmanned airship based on adaptive feedback linearization. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). IEEE, 2011; 2257–2261. https://doi.org/10.1109/mec.2011.6025942.
  • [22] Zheng Z, Liu L, Zhu M. Integrated guidance and control path following and dynamic control allocation for a stratospheric airship with redundant control systems. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2016;230(10):1813–26. https://doi.org/10.1177/0954410015613738.
  • [23] Oliveira MC, Skelton RE. Tensegrity systems. Springer US, 2009. https://doi.org/10.1007/978-0-387-74242-7.
  • [24] de Oliveira MC, Wroldsen AS. Dynamics of tensegrity systems. Efficient modeling and control of large-scale systems. Springer US, 2010; 73–88. https://doi.org/10.1007/978-1-4419-5757-3_3.
  • [25] Williamson D, Skelton RE. General class of tensegrity structures: topology and prestress equilibrium analysis. J Guid Control Dyn. 2003;26(5):685–94. https://doi.org/10.2514/2.5119.
  • [26] Snelson K. Snelson on the tensegrity invention. Int J Space Struct. 1996;11(1–2):43–8. https://doi.org/10.1177/026635119601-207.
  • [27] Peng H, et al. Symplectic instantaneous optimal control of deployable structures driven by sliding cable actuators. J Guid Control Dyn. 2020;43(6):1114–28. https://doi.org/10.2514/1.g004872.
  • [28] Arcaro V, Adeli H. Form-finding and analysis of hyperelastic tensegrity structures using unconstrained nonlinear programming. Eng Struct. 2019;191:439–46. https://doi.org/10.1016/j.engstruct.2019.04.060.
  • [29] Phocas MC, Christoforou EG, Dimitriou P. Kinematics and control approach for deployable and reconfigurable rigid bar link-age structures. Eng Struct. 2020;208: 110310. https://doi.org/10.1016/j.engstruct.2020.110310.
  • [30] Korkmaz S, Ali NBH, Smith IF. Determining control strategies for damage tolerance of an active tensegrity structure. Eng Struct. 2011;33(6):1930–9. https://doi.org/10.1016/j.engstruct.2011.02.031.
  • [31] Feng X, Miah MS, Ou Y. Dynamic behavior and vibration mitigation of a spatial tensegrity beam. Eng Struct. 2018;171:1007–16. https://doi.org/10.1016/j.engstruct.2018.01.045.
  • [32] Veuve N, Safaei SD, Smith IF. Active control for mid-span connection of a deployable tensegrity footbridge. Eng Struct. 2016;112:245–55. https://doi.org/10.1016/j.engstruct.2016.01.011.
  • [33] Knap L, et al. Strategies for reduction of energy consumption during ascending and descending process of modern telescopic HAPS aerostats. Bull Pol Acad Sci Tech Sci. 2020;68(1):155–68. https://doi.org/10.24425/bpasts.2020.131833.
  • [34] Kumar BS, et al. Mechanical properties of ANTRIX balloon film and fabrication of single cap large volume balloons. Adv Space Res. 2008;42(10):1691–7. https://doi.org/10.1016/j.asr.2008.03.030.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bfeb262-c573-45d9-a2c3-edc243f76fdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.