Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, an algorithm for identification of elastic and viscoelastic constants of a recently developed constitutive equation for thermoplastics and resins is presented. The equation has been applied to model the viscoelastic response of ultra high molecular weigth polyethylene. In order to determine the material parameters, a series of rheological tests has been performed. A set of equations describing one-dimensional processes has been derived and is utilized to determine the material constants. The material parameter identification leads to a set of 9 constants, i.e. 3 constants of elasticity and 6 constants of viscoelasticity. For the determined values of parameters, several validation tests have been performed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
569--580
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Institute of Mechanics and Printing, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Mechanics and Printing, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Mechanics and Printing, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Manufacturing Technology, Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Manufacturing Technology, Warsaw, Poland
Bibliografia
- 1. Bradshaw R.D., Brinson L.C., 1997, A sign control method for fitting and interconverting material functions for linearly viscoelastic solids, Mechanics of Time-Dependent Materials, 1, 85-108
- 2. Christensen R.M., 1971, Theory of Viscoelasticity, Academic Press
- 3. Ciambella J., Paolone A., Vidoli S., 2010, A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber, Mechanics of Materials, 42, 932-944
- 4. Fung Y.C., 1981, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag
- 5. Garbarski J., 1988, Application of the exponential function to the description of viscoelasticity in some solid polymers, International Journal of Mechanical Sciences, 3, 165-178
- 6. Goh S.M., Charalambides M.N., Williams J.G., 2004, Determination of the constitutive constants of non-linear viscoelastic materials, Mechanics of Time-Dependent Materials, 8, 255-268
- 7. Holzapfel G.A., 2010, Nonlinear Solid Mechanics, John Wiley & Sons Ltd., New York
- 8. Knowles J.K., 1977, The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids, International Journal of Fracture, 13, 611-639
- 9. Laksari K., Shafieian M., Darvish K., 2012, Constitutive model for brain tissue under finie compression, Journal of Biomechanics, 45, 642-346
- 10. Ogden R.W., 1997, Non-Linear Elastic Deformations, Dover Publications, Inc., Mineola, New York
- 11. Pawlikowski M., 2012, Cortical bone tissue viscoelastic properties and its constitutive equation – preliminary studies, The Archive of Mechanical Engineering, 59, 31-52
- 12. Suchocki C., 2011, A finite element implementation of knowles stored-energy function: theory, coding and applications, The Archive of Mechanical Engineering, 58, 319-346
- 13. Suchocki C., 2013, A quasi-linear viscoelastic rheological model for thermoplastics and resins, Journal of Theoretical and Applied Mechanics, 51, 1, 117-129
- 14. Taylor R.L., Pister K.S., Goudreau G.L., 1970, Thermomechanical analysis of viscoelastic solids, International Journal for Numerical Methods in Engineering, 2, 45-59
- 15. Wilczyński A., 1968, Selected problems of testing of mechanical properties of linearly viscoelastic solids, Scientific Surveys Warsaw University of Technology, Mechanics, 1 [in Polish]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bfea616-0895-4641-8cd9-228388a03696