PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An innovative technology for recovery of zinc, lead and silver from zinc leaching residue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zinc leaching residue is a good source of zinc and has a great potential to be utilized. However, it is very difficult to recover lead, zinc and silver from the residue by traditional technologies. In this study, a new technology based on conversions of PbSO4 and ZnSO4 in the residue to their respective sulfides by reduction roasting with coal powder followed by a flotation treatment was developed. The effects of roasting temperature, coal dosage, reaction time and pyrite dosage were investigated at a laboratory scale. The results showed that the conversion extent of PbSO4 and ZnSO4 under the optimal experimental conditions was 71.89 and 69.76%, respectively. A flotation concentrate containing 39.13% Zn, 6.93% Pb and 973.54 g/Mg Ag was obtained from the treated material, and the recovery of Zn, Pb and Ag was 48.38, 68.23 and 77.41%, respectively. The tailing containing ZnFe2O4 or Fe3O4 could be either stockpiled or further disposed.
Rocznik
Strony
943--954
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • ABDEL-REHIM A., 2006, Thermal and XRD analysis of Egyptian galena, Journal of Thermal Analysis and Calorimetry, 86(2): 393-401.
  • ALTUNDOGAN H S., ERDEM M., ORHAN R., OZER A., TURNEN F., 1998, Heavy metal pollution potential of zinc leach residues discarded in Çinkur plant, Tr. J. Eng. Environ. Sci, 22, 167-177.
  • FUERSTENAU D., SOTILLO F., VALDIVIESO A, 1985, Sulfidization and flotation behavior of anglesite, cerussite and galena, 15 th International Mineral Processing Congress: 74-86.
  • HABASHI F., MIKHAIL S.A., VAN K.V, 1976, Reduction of sulfates by hydrogen, Canadian Journal of Chemistry, 54(23): 3646-3650.
  • HERRERA-URBINA R., SOTILLO F., FUERSTENAU D.,1999, Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena, International Journal of Mineral Processing, 3,157-170.
  • KARNACHUK O., KUROCHKINA S., TUOVINEN O., 2002, Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Applied Microbiology and Biotechnology, 58(4): 482-486.
  • LAMBERT J J., SIMKOVICH G., WALKER J P., 1998, The kinetics and mechanism of the pyrite-to-pyrrhotite transformation, Metallurgical and Materials Transactions B, 29(2): 385-396.
  • LIANG Y.J., CHAI L.Y., LIU H., MIN X.B., MAHMOOD Q., ZHANG H.J., KE Y., 2012, Hydrothermal sulfidation of zinc-containing neutralization sludge for zinc recovery and stabilization. Minerals Engineering, 25(1): 14-19.
  • LI M., PENG B., CHAI L Y., PENG N., YAN H., HOU D., 2012, Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, Journal of hazardous materials,6, 323-330.
  • LI Y., WANG J K., WEI C., LIU C X., JIANG J B., WANG F., 2010, Sulfidation roasting of low grade lead–zinc oxide ore with elemental sulfur, Minerals Engineering, 23(7): 563-566.
  • MALINOWSKI C., MALINOWSKI K., MALECKI S, 1996, Analysis of the chemical processes occurring in the system PbSO4-ZnS, Thermochimica Acta, 275(1): 117-130.
  • MALINOWSKI C., MALECKI S., ZOLNIERCZYK D, 2004, Reduction of PbSO4 by (CO+CO2) mixture, Thermochimica Acta, 423(1): 143-148.
  • MORGAN D., WARNE S.S.J., WARRINGTON S., NANCARROW P., 1986, Thermal decomposition reactions of caledonite and their products, Mineralogical Magazine, 50: 521-526.
  • ONAL G., BULUT G., GUL A., KANGAL O., PEREK K., ARSLAN F., 2005, Flotation of Aladag oxide lead–zinc ores, Minerals Engineering, 18(2): 279-282.
  • OZVERDI A., ERDEM M., 2010, Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment, Hydrometallurgy, 100(3): 103-109.
  • PACHOLEWSKA M., 2004, Bioleaching of galena flotation concentrate, Fizykochemiczne Problemy Mineralurgii, 38:281-290.
  • PATINO F., SALINAS E., CRUELLS M., ROCA A., 1998, Alkaline decomposition–cyanidation kinetics of argentian natrojarosite, Hydrometallurgy, 49(3): 323-336.
  • PENG R., REN H., ZHANG X., 2003, Metallurgy of lead and zinc, Beijing: Science Pres,250-312.
  • RAGHAVAN R., MOHANAN P., PATNAIIK S.,1998, Innovative processing technique to produce zinc concentrate from zinc leach residue with simultaneous recovery of lead and silver, Hydrometallurgy, 48(2): 225-237.
  • RASHCHI F., DASHTI A., ARABPOUR-YAZDI M., ABDIZADEH H., 2005, Anglesite flotation: a study for lead recovery from zinc leach residue, Minerals Engineering, 18 ,205-212.
  • RASTAS J., LEPPINEN J., HINTIKKA V., FUGLEBERG S., 1990, Recovery of lead, silver and gold from zinc process residues by a sulfidizationflotation method, Lead-Zinc 90: 193-209.
  • ROCA A., CRUELLS M., PATINO F., RIVERA I., PLATA M., 2006, Kinetic model for the cyanidation of silver ammonium jarosite in NaOH medium, Hydrometallurgy, 81(1): 15-23.
  • VAN-HOUTEN R T., POL L W H., LETTINGA G, 1994, Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source, Biotechnology and Bioengineering, 44(5): 586-594.
  • VINALS J., NUNEZ C., CARRASCO J., 1991, Leaching of gold, silver and lead from plumbojarosite-containing hematite tailings in HCl-CaCl2 media, Hydrometallurgy,26(2): 179-199.
  • WEIJMA J., HOOP K., BOSMA W., DIJKMAN H., 2002a, Biological conversion of anglesite (PbSO4) and lead waste from spent car batteries to galena (PbS), Biotechnology Progress, 4,770-775.
  • WEIJMA J., GUBBELS F., STAMS A., LENS P., LETTINGA G., 2002b, Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor, Water Science and Technology, 45(10): 75-80.
  • WOLTHOORN A., KUITERT S., DIJKMAN H., HUISMAN J.L., 2007, Application of sulfate reduction for the biological conversion of anglesite to galena, Advanced Materials Research, 20: 197-200.
  • ZHANG H.B., 1992, Chemical phase analysis of ore and industrial product, Beijing: Metallurgical Industry Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bf84de6-4198-42a8-ad04-18e5711cc488
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.