PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Agricultural Dependence of the Formation of Water Balance Stability of the Sluch River Basin under Conditions of Climate Change

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the research was to calculate water footprint in growing the basic field crops and establish the volumes of additional water accumulation to provide the hydro-functioning of the Sluch river basin in the territory of Ukraine under conditions of climate change. The research was based on the data of climate change analysis in 1901–2022, decoding of the actual satellite imagery of the spacecraft Sentinel 2 and statistical data on crop rotation structure in the agro-landscapes of the water catchment area in the research region. The volumes of water footprint were calculated for the vegetation periods of the basic field winter and spring crops in 2018–2021: 2018–2019 – a semi-wet year grows into a dry year; 2019–2020 – a dry year grows into a semi-wet year; 2020–2021 – a semi-wet year grows into a wet year. Spatio-temporal regularities of the formation of water footprint and the ratio of green and blue water use in growing different agricultural crops were determined. The total volume of water footprint in growing the field crops of a certain crop rotation equaled: in 2018–2019 – 1991 mln m3 , 2019–2020 – 2440 mln m3 , 2020–2021 – 2363 mln m3. The total volume of precipitation in the vegetation period within the river water catchment area was: in 2018–2019 – 3760 mln mм3, 2019–2020 – 4423 mln m3, 2020–2021– 4839 mln m3. The total volume of additional accumulation of green (rain) water in the vegetation period in the agro-landscapes of the river basin equaled: in 2018–2019 – 1769 mln m3, or 47.0% of precipitation in the vegetation period (Pv); 2019–2020 – 1983 mln m3, or 44.8% of Pv; 2020–2021 – 2476 mln m3, or 51.2% of Pv. The proposed research scheme and the obtained results are important for adjusting and substantiating water- and resource-saving agrotechnologies and crop rotations depending on climate change, for determining water balance stability of the river basin in accordance with the indicators of additional accumulation of green water.
Twórcy
  • Kherson State Agrarian and Economic University, Stritens’ka str. 23, Kherson, 73006, Ukraine
  • Kherson State Agrarian and Economic University, Stritens’ka str. 23, Kherson, 73006, Ukraine
  • Kherson State Agrarian and Economic University, Stritens’ka str. 23, Kherson, 73006, Ukraine
Bibliografia
  • 1. Asgarizadeh Z., Gifford R., Colborne L. 2023. Predicting climate change anxiety. Journal of Environmental Psychology, 90, 102087. https://doi.org/10.1016/j.jenvp.2023.102087
  • 2. Bai Y., Zhang S., Mu E., Zhao Y., Cheng L., Zhu Y., Yuan Y., Wang Y., Ding A. 2023. Characterizing the spatiotemporal distribution of dissolved organic matter (DOM) in the Yongding River Basin: Insights from flow regulation. Journal of Environmental Management, 325 (B), 116476. https://doi.org/10.1016/j.jenvman.2022.11647
  • 3. Benini M., Blasi E., Detti P., Fosci L. 2023. Solving crop planning and rotation problems in a sustainable agriculture perspective. Computers & Operations Research, 159, 106316. https://doi.org/10.1016/j.cor.2023.106316
  • 4. Biedunkova O.O. 2013. Ecological assessment of modern state of river Sluch surface water is basin principle. Bulletin of the National University and Nature Management, 4(64), 74-82. (in Ukrainian)
  • 5. Biedunkova O.O., Statnyk I.I., Boiaryn M.V. 2023. Selection of indicators of surface water quality monitoring of Sluch river. Water bioresources and aquaculture, 1(13), 109–123. https://doi.org/10.32851/wba.2023.1.9 (in Ukrainian)
  • 6. Breus D.S. and Skok S.V. 2021. Spatial modelling of agro-ecological condition of soils in steppe zone of Ukraine. Indian Journal of Ecology, 2021, 48(3), 627-633.
  • 7. Breus D.S., Yevtushenko O.Т. 2022. Modeling of Trace Elements and Heavy Metals Content in the Steppe Soils of Ukraine. Journal of Ecological Engineering, 23(2), 159-165.
  • 8. Breus D. and Yevtushenko O. 2023. Agroecological Assessment of Suitability of the Steppe Soils of Ukraine for Ecological Farming. Journal of Ecological Engineering, 24(5), 229–236.
  • 9. Chen Y., Marek G.W., Marek T.H., Moorhead J.E., Heflin K.R., Brauer D.K., Gowda P.H., Srinivasan R. 2019. Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agricultural Water Management, 221, 13–24. https://doi.org/10.1016/j.agwat.2019.04.021
  • 10. Chowdhury A., Hasan K., Hasan R., Younos T.B. 2020. Climate change impacts and adaptations on health of Internally Displaced People (IDP): An exploratory study on coastal areas of Bangladesh. Heliyon, 6(9), e05018. https://doi.org/10.1016/j.heliyon.2020.e05018
  • 11. ColantoniA., Delfanti L.M.P., Cossio F., Baciotti B. 2015. Soil Aridity under Climate Change and Implications for Agriculture in Italy. Applied Mathematical Sciences, 9(50), 2467–2475. DOI:10.12988/ams.2015.52112
  • 12.Coleman M.A., Wernberg T. 2021. A Glass Half Full: Solutions-Oriented Management under Climate Change. Trends in Ecology & Evolution, 36 (5), 385–386. https://doi.org/10.1016/j.tree.2021.02.009
  • 13. D’Ambrosio E., Ricci G.F., Gentile F., Girolamo A.M. 2020. Using water footprint concepts for water security assessment of a basin under anthropogenic pressures. Science of the Total Environment, 748, 141356. https://doi.org/10.1016/j.scitotenv.2020.141356
  • 14. Domaratskiy E.O., Zhuykov O.G., Ivaniv M.O. 2018a. Influence of Sowing Periods and Seeding Rates on Yield of Grain Sorghum Hybrids under Regional Climatic Transformations. Indian Journal of Ecology, 45 (4), 785–789.
  • 15. Domaratskiy E.O., Bazaliy V.V., Domaratskiy O.O., Dobrovol’skiy A.V., Kyrychenko N.V., Kozlova O.P. 2018b. Influence of Mineral Nutrition and Combined Growth Regulating Chemical on Nutrient Status of Sunflower. Indian Journal of Ecology, 45 (1), 126–129.
  • 16. Domaratskiy Ye., Berdnikova O., Bazaliy V., Shcherbakov V., Gamayunova V., Larchenko O., Domaratskiy A., Boychuk I. 2019. Dependence of winter wheat yielding capacity on mineral nutrition in irrigation conditions of southern Steppe of Ukraine. Indian Journal of Ecology, 46 (3), 594–598.
  • 17. Dudiak N.V., Pichura V.I., Potravka L.A., Stratichuk N.V. 2019a. Geomodelling of Destruction of Soils of Ukrainian Steppe Due to Water Erosion. Journal of Ecological Engineering, 20 (8), 192–198.
  • 18. Dudiak N.V., Potravka L.A., StroganovA.A. 2019b. Soil and climatic bonitation of agricultural lands of the steppe zone of Ukraine. Indian Journal of Ecology, 46(3), 534–540.
  • 19. Furtak K., Wolińska A. 2023. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – A review. CATENA, 231, 107378. https://doi.org/10.1016/j.catena.2023.107378
  • 20. Gao J., Zhuo L., Duan X., Wu P. 2023. Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district. Agricultural Water Management, 282, 108274. https://doi.org/10.1016/j.agwat.2023.108274
  • 21. Han Z., Wei Y., Meng J., Zou Y., Wu Q. 2023. Integrated water security and coupling of socialecological system to improve river basin sustainability. Science of the Total Environment, 905, 167182. https://doi.org/10.1016/j.scitotenv.2023.167182
  • 22. HoekstraA.Y., ChapagainA.K. 2008. Globalization of Water: Sharing the Planet’s Freshwater Resources. Blackwell Publishing: Oxford, 224.
  • 23.Jiang K., Zhang J., Zhang L., Wang D., Wang Y. 2023. Sustainable cooperation in the watershed ecological compensation public-private partnership project: Lessons from China’s Chishui river basin. Socio-Economic Planning Sciences, 90, 101730. https://doi.org/10.1016/j.seps.2023.101730
  • 24. Kim S., Kim S., Green C.H.M., Jeong J. 2022. Multivariate polynomial regression modeling of total dissolved-solids in rangeland stormwater runoff in the Colorado River Basin. Environmental Modelling & Software, 157, 105523. https://doi.org/10.1016/j.envsoft.2022.105523
  • 25. Koasidis K., Koutsellis T., Xexakis G., Nikas A., Doukas H. 2023. Understanding expectations from and capabilities of climate-economy models for measuring the impact of crises on sustainability. Journal of Cleaner Production, 414, 137585. https://doi.org/10.1016/j.jclepro.2023.137585
  • 26. Korkhova M., Panfilova A., Domaratskiy Ye., Smirnova I. 2023. Productivity of Winter Wheat (T. aestivum, T. durum, T. spelta) Depending on Varietal Characteristics in the Context of Climate Change. Ecological Engineering & Environmental Technology, 24(4), 236–244.
  • 27. LavetN.V.S., BanerjeeA., KarthaS.A., DuttaS. 2021. Impact of anthropogenic activities on river-aquifer exchange flux in an irrigation dominated Ganga river sub-basin. Journal of Hydrology, 602, 126811. https://doi.org/10.1016/j.jhydrol.2021.126811
  • 28. Li M., Lu S., Li W. 2022. Stakeholders′ ecological economic compensation of river basin: Amulti-stage dynamic game analysis. Resources Policy, 79, 103083. https://doi.org/10.1016/j.resourpol.2022.103083
  • 29. Lisetskii F., Pichura V. 2016. Steppe Ecosystem Functioning of East European Plain under Age-Long Climatic Change Influence. Indian Journal of Science and Technology, 9(18), 1–9. 10.17485/ijst/2016/v9i18/93780,
  • 30. Lisetskii F., Polshina M., Pichura V., Marinina O. 2017. Climatic factor in long-term development of forest ecosystems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17 (32), 765–774.
  • 31. Liu F., Wang X., Dai S., Zhou J., Liu D., Hu Q., Bai J., Zhao L., Nazir N. 2023. Impact of different industrial activities on heavy metals in flood plain soil and ecological risk assessment based on bioavailability: A case study from the Middle Yellow River Basin, northern China. Environmental Research, 235, 116695. https://doi.org/10.1016/j.envres.2023.116695
  • 32. Liu H., Wang Z., Zhang L., Tang F., Wang G., Li M. 2023. Construction of an ecological security network in the Fenhe River Basin and its temporal and spatial evolution characteristics. Journal of Cleaner Production, 417, 137961. https://doi.org/10.1016/j.jclepro.2023.137961
  • 33. Lyu Y., Chen H., Cheng Z., He Y., Zheng X. 2023. Identifying the impacts of land use landscape pattern and climate changes on streamflow from past to future. Journal of Environmental Management, 345, 118910. https://doi.org/10.1016/j.jenvman.2023.118910
  • 34. Ma T., Moore J., Cleary A. 2022. Climate change impacts on the mental health and wellbeing of young people: A scoping review of risk and protective factors. Social Science & Medicine, 301, 114888. https://doi.org/10.1016/j.socscimed.2022.114888
  • 35. Madeira C.L., Acayaba R.D., Santos V.S., Villa J.E.L., Jacinto-Hernández C., Azevedo J.A.T., Elias V.O., Montagner C.C. 2023. Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. Chemosphere, 341, 139954. https://doi.org/10.1016/j.chemosphere.2023.139954
  • 36. Mei H., Li Y.P., Suo C., Ma Y., Lv J. 2020. Analyzing the impact of climate change on energy economy-carbon nexus system in China. Applied Energy, 262, 1144568. https://doi.org/10.1016/j.apenergy.2020.114568
  • 37. Montes R., Méndez S., Cobas J., Carro N., Neuparth T., Alves N., Santos M.M., Quintana J.B., Rodil R. 2023. Occurrence of persistent and mobile chemicals and other contaminants of emerging concern in Spanish and Portuguese wastewater treatment plants, transnational river basins and coastal water. Science of the Total Environment, 885, 163737. https://doi.org/10.1016/j.scitotenv.2023.163737
  • 38. Muratoglu A. 2019. Water footprint assessment within a catchment: A case study for Upper Tigris River Basin. Ecological Indicators, 106, 105467. https://doi.org/10.1016/j.ecolind.2019.105467
  • 39. Novoa V., Ahumada-Rudolph R., Rojas O., Munizaga J., Sáez K., Arumí J.L. 2019. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecological Indicators, 98, 19–28. https://doi.org/10.1016/j.ecolind.2018.10.048
  • 40. Paquin V. 2022. 78.1 Mental Health Impacts of Climate Change on Circumpolar Indigenous Peoples. Journal of the American Academy of Child & Adolescent Psychiatry, 61(10), S109. https://doi.org/10.1016/j.jaac.2022.07.445
  • 41. Pei Y., Qiu H., Yang D., Liu Z., Ma S., Li J., Cao M., Wufuer W. 2023. Increasing landslide activity in the Taxkorgan River Basin (eastern Pamirs Plateau, China) driven by climate change. CATENA, 223, 106911.https://doi.org/10.1016/j.catena.2023.106911
  • 42. Pellicer-Martínez F., Martínez-Paz J.M. 2016. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Science of the Total Environment, 571, 561–574. https://doi.org/10.1016/j.scitotenv.2016.07.022
  • 43. PichuraV.I.,Domaratsky Y.A., Yaremko Yu.I., Volochnyuk Y.G., Rybak V.V. 2017. Strategic Ecological Assessment of the State of the Transboundary Catchment Basin of the Dnieper River Under Extensive Agricultural Load.Indian Journal of Ecology, 44 (3), 442–450.
  • 44. Pichura V.I., Malchykova D.S., Ukrainskij P.A., Shakhman I.A., Bystriantseva A.N. 2018. Anthropogenic Transformation of Hydrological Regime of The Dnieper River. Indian Journal of Ecology, 45(3), 445–453.
  • 45. Pichura V.I., Potravka L.A., Skrypchuk P.M., Stratichuk N.V. 2020a. Anthropogenic and climatic causality of changes in the hydrological regime of the Dnieper river. Journal of Ecological Engineering, 21 (4), 1–10. DOI: https://doi.org/10.12911/22998993/119521
  • 46. Pichura V.I. 2020b. Basin organization of nature management in the catchment area of the transboundary Dnipro River. Kherson: «OLDI-PLUS», 380. (in Ukrainian)
  • 47. Pichura V., Potravka L., Skok S., Vdovenko N. 2020c. Causal Regularities of Effect of Urban Systems on Condition of Hydro Ecosystem of Dnieper River. Indian Journal of Ecology, 47 (2), 273–280.
  • 48. Pichura V., Potravka L., Vdovenko N., Biloshkurenko O., Stratichuk N., Baysha K. 2022. Changes in Climate and Bioclimatic Potential in the Steppe Zone of Ukraine. Journal of Ecological Engineering, 23 (12), 189–202. https://doi.org/10.12911/22998993/154844
  • 49. Pichura V., Domaratskiy Ye., Potravka L., Biloshkurenko O., Dobrovol’skiy A. 2023a. Application of the Research on Spatio-Temporal Differentiation of a Vegetation Index in Evaluating Sunflower Hybrid Plasticity and Growth-Regulators in the Steppe Zone of Ukraine. Journal of Ecological Engineering, 24(6), 144–165. https://doi.org/10.12911/22998993/162782
  • 50. Pichura V., Potravka L., Domaratskiy Ye., Petrovas S. 2023b. Spatiotemporal patterns and vegetation forecasting of sunflower hybrids in soil and climatic conditions of the Ukrainian Steppe zone. Ukrainian Black Sea Region Agrarian Science, 27(3), 31–45. 10.56407/bs.agrarian/3.2023.31.
  • 51. Prajapati R.N., Ibrahim N., Thapa B.R. 2023. Climate change impact on water availability in the Himalaya: Insights from Sunkoshi River basin, Nepal. HydroResearch. https://doi.org/10.1016/j.hydres.2023.10.002
  • 52. Prasood S.P., Mukesh M.V., Rani V.R., Sajinkumar K.S., Thrivikramji K.P. 2021. Urbanization and its effects on water resources: Scenario of a tropical river basin in South India. Remote Sensing Applications: Society and Environment, 23, 100556. https://doi.org/10.1016/j.rsase.2021.100556
  • 53. Priymachenko I.V. 2013 Environmental monitoring of the Sluch river basin. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine. Series: Agronomy, 183(2), 241-248. (in Ukrainian)
  • 54. Qu S., Wang L., Lin A., Yu D., Yuan M., Li C. 2020. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators, 108, 105724. https://doi.org/10.1016/j.ecolind.2019.105724
  • 55.Rivaes R.P., Feio M.J., Almeida S.F.P., Calapez A.R., Sales M., Gebler D., Lozanovska I., Aguiar F.C. 2022. River ecosystem endangerment from climate change-driven regulated flow regimes. Science of the Total Environment, 818. 151857. https://doi.org/10.1016/j.scitotenv.2021.151857
  • 56. Santos F.M., Pelinson N.S., Oliveira R.P., Lollo J.A.D. 2023. Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Guaçu River basin in Sao Paulo State, Brazil. CATENA, 222. 106872. https://doi.org/10.1016/j.catena.2022.106872
  • 57. Sauvé S., Lamontagne S., Dupras J., Stahel W. 2021. Circular economy of water: Tackling quantity, quality and footprint of water. Environmental Development, 39, 100651. https://doi.org/10.1016/j.envdev.2021.100651
  • 58. Sgroi F., Trapani A.M., Testa R., Tudisca S. 2014. Economic sustainability of early potato production in the Mediterranean area. American Journal of Applied Sciences, 11, 1598–1603. 10.3844/ajassp.2014.1598.1603.
  • 59. Skok S., Breus D., Almashova V. 2023. Assessment of the Effect of Biological Growth-Regulating Preparations on the Yield of Agricultural Crops under the Condi-tions of Steppe Zone. Journal of Ecological Engineering, 24(7), 135–144.
  • 60. Song M., He W., An M., Fang X., Wang B., Ramsey T.S. 2023. Toward better agricultural grey water footprint allocation under economy-resource factors constraint. Ecological Indicators, 154, 110806. https://doi.org/10.1016/j.ecolind.2023.110806
  • 61. Stadler S.J. 2005. Aridity indexes. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Heidelberg,Germany, 89–94.
  • 62. Strahler A.N. 1952. Hypsomttric (area-altitude) analysis of erosional topography. Geol. Soc.Amer. Bull.
  • 63. Tobias W., Manfred S., Klaus J., Massimiliano Z., Bettina S. 2023. The future of Alpine Run-of-River hydropower production: Climate change, environmental flow requirements, and technical production potential. Science of the Total Environment, 890, 163934. https://doi.org/10.1016/j.scitotenv.2023.163934
  • 64. Tsai H.W., Lee Y.C. 2023. Effects of land use change and crop rotation practices on farmland ecosystem service valuation. Ecological Indicators, 155, 110998. https://doi.org/10.1016/j.ecolind.2023.110998
  • 65. Wen M., Chen L. 2023. Global food crop redistribution reduces water footprint without compromising species diversity. Journal of Cleaner Production, 383, 135437. https://doi.org/10.1016/j.jclepro.2022.135437
  • 66. Wu N., Yin J., Engel B.A., Hua E., Li X., Zhang F., Wang Y. 2022. Assessing the sustainability of freshwater consumption based on developing 3D water footprint: A case of China. Journal of Cleaner Production, 364, 132577. https://doi.org/10.1016/j.jclepro.2022.132577
  • 67. Wu X., Feng X., Wang Z., Chen Y., Deng Z. 2023. Multi-source precipitation products assessment on drought monitoring across global major river basins. Atmospheric Research, 295, 106982. https://doi.org/10.1016/j.atmosres.2023.106982
  • 68. Xie M., Ren Z., Li Z., Zhang X., Ma X., Li P., Shen Z. 2023. Evolution of the precipitation–stream runoff relationship in different precipitation scenarios in the Yellow River Basin. Urban Climate, 51, 101609. https://doi.org/10.1016/j.uclim.2023.101609
  • 69. Xiong L., Ning J., Wang J., DongY. 2021. Coupling degree evaluation of heavy metal ecological capacity and enterprise digital transformation in river basins. Ecological Indicators, 133, 108358. https://doi.org/10.1016/j.ecolind.2021.108358
  • 70. Yin J., Xue Y., Li Y., Zhang C., Xu B., Liu Y., Ren Y., Chen Y. 2023. Evaluating the efficacy of fisheries management strategies in China for achieving multiple objectives under climate change. Ocean & Coastal Management, 245, 106870. https://doi.org/10.1016/j.ocecoaman.2023.106870
  • 71. Zhang M., Wang K., Liu H., Yue Y., Ren Y., Chen Y., Zhang C., Deng Z. 2023. Vegetation inter-annual variation responses to climate variation in different geomorphic zones of the Yangtze River Basin, China. Ecological Indicators, 152, 110357. https://doi.org/10.1016/j.ecolind.2023.110357
  • 72. Zhang Y., Wu T., Song C., Hein L., Shi F., Han M., Ouyang Z. 2022. Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin. Ecosystem Services, 58, 101489. https://doi.org/10.1016/j.ecoser.2022.101489
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bf33c46-0427-42e7-99b6-5e74a96ea91d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.