Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work presents a preliminary assessment of the potential application of water-lubricated radial sliding bearings as main shaft bearings in large offshore wind turbines. The study is driven by the environmental concerns and the high cost and size associated with conventional rolling element bearings. Four bearing material candidates were examined: lignum vitae, a compliant elastic polymer, a three-layer PTFE-based composite, and a fibre-reinforced polymer. Pilot experiments were carried out on a custom-built test rig capable of accurately capturing friction torque under controlled radial loads, with freshwater serving as both lubricant and coolant. The procedure included a defined running-in phase and multiple repeated tests to ensure reproducibility. The sliding speed and load conditions were determined using a combination of multi-body dynamic simulations of the IEA 15 MW reference turbine and published load analyses, ensuring that the test conditions reflect realistic operating values. The results showed that the polymer and PTFE-based composite exhibited excellent tribological behaviour, maintaining very low friction coefficients during both steady and start-up operation. Although the wear behaviour was not quantified at this stage, the low friction coefficients indicate operation in a full hydrodynamic lubrication regime, which is expected to minimise wear. Overall, this preliminary investigation suggests that selected water-lubricated sliding bearings represent a promising, environmentally friendly alternative for offshore wind turbine main shafts, offering advantages in corrosion resistance, durability under dynamic loading, and potentially low wear.
Czasopismo
Rocznik
Tom
Strony
157--167
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, 11/12 Narutowicza St., Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, 11/12 Narutowicza St., Gdańsk, Poland
Bibliografia
- 1. Nejad AR, et al. Wind turbine drivetrains: state-of-theart technologies and future development trends. Wind Energ Sci 2022, 7, 387–411. https://doi.org/10.5194/wes-7-387-2022.
- 2. Zhu C, Zhang R, Song C, Tan J, Yang L. Research status and development trends of large wind turbine main shaft sliding bearings. China Mech Eng 2024, 35(10), 1711–1721. https://doi.org/10.3969/j.issn.1004-132X.2024.10.001.
- 3. Liu Z, Zhang L. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings. Meas 2020, 149, 107002. https://doi.org/10.1016/j.measurement.2019.107002.
- 4. Hart E, et al. Main bearing replacement and damage – A field data on 15 gigawatts of wind energy capacity. Natl Renew Energy Lab, NREL/TP-5000-86228, 2023. Retrieved from https://www.nrel.gov/docs/fy23osti/86228.pdf.
- 5. Liang Y, An Z, Liu B. Fatigue life prediction for wind turbine main shaft bearings. Int Conf Qual, Reliab, Risk, Maint, Safety Eng (QR2MSE), 2013. https://doi.org/10.1109/QR2MSE.2013.6625711.
- 6. Yuan Y, Wang J, Ren L, Chen J. Influence of axial clearance on load distribution in double supported tapered roller bearings of wind turbine main shaft. Proc Inst Mech Eng C J Mech Eng Sci 2024, 238(21), 10536–10552. https://doi.org/10.1177/09544062241266069.
- 7. Kock S, Jacobs G, Bosse D. Determination of wind turbine main bearing load distribution. J Phys Conf Ser 2019, 1222, 012030. https://doi.org/10.1088/1742-6596/1222/1/012030.
- 8. AL-Bedhany JH, Mankhi TA, Legutko S. A surface study of failed planetary wind turbine gearbox bearings to investigate the causes of the bearing premature failure issue. Heliyon 2024, 10(4), e25860. https://doi.org/10.1016/j.heliyon.2024.e25860.
- 9. Kenworthy J, et al. Wind turbine main bearing rating lives as determined by IEC 61400-1 and ISO 281: a critical review and exploratory case study. Wind Energy 2024, 27(2), 179–197. https://doi.org/10.1002/we.2883.
- 10. Cheng S, Meng X, Yin J, Yang L, Zhang J. Configuration performance of main shaft bearings for transient-loaded wind turbine. Int J Mech Sci 2025, 293, 110171. https://doi.org/10.1016/j.ijmecsci.2025.110171.
- 11. Ding H, Mermertas Ü, Hagemann T, Schwarze H. Calculation and validation of planet gear sliding bearings for a three-stage wind turbine gearbox. Lubricants 2024, 12, 95. https://doi.org/10.3390/lubricants12030095.
- 12. Hirani H. Fundamentals of engineering tribology with applications. Cambridge University Press; 2016. https://doi.org/10.1017/CBO9781107479975.
- 13. Khonsari MM, Booser ER. Applied tribology: bearing design and lubrication. Wiley-Interscience; 2017. https://doi.org/10.1002/9781118700280.
- 14. Euler J, Jacobs G, Loriemi A, Jakobs T, Rolink A, Röder J. Scaling challenges for conical plain bearings as wind turbine main bearings. Wind 2023, 3, 485–495. https://doi.org/10.3390/wind3040027.
- 15. Larsen TJ, Hansen AM. How 2 HAWC2: the user’s manual (Risoe-R-1597). Forskningscenter Risoe; 2007.
- 16. U.S. Environmental Protection Agency. Vessel General Permit for Discharges Incidental to the Normal Operation of a Vessel (VGP), 2013.
- 17. U.S. Environmental Protection Agency. The Vessel Incidental Discharge Act (VIDA), 2018.
- 18. Orndorff R. Water lubricated rubber bearings, history and new developments. Nav Eng J 1985, 39–52. https://doi.org/10.1111/j.1559-3584.1985.tb01877.x.
- 19. Litwin W. Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing. Tribol Int 2015, 82, 153–161. https://doi.org/10.1016/j.triboint.2014.10.002.
- 20. Carter CD. Seawater for propeller shaft lubrication in merchant ships - environmental, operational, legal and shipbuilding considerations. World Maritime Technology Conf, 2024. https://thordonbearings.com/docs/default-source/marine/technical-papers/seawaterfor-propeller-shaft-lubrication-in-merchant-ships.pdf?sfvrsn=6d500b85_22.
- 21. Olszewski A, Żochowski T, Gołębiewski G. Analysis of the load-carrying capacity of a hydrodynamic water-lubricated bearing in a hydroelectric power plant. Tribologia 2018, 2, 103–110. https://doi.org/10.5604/01.3001.0012.6982.
- 22. Zhang R, Song C, Zhou Y, Tan J, Zeng Z. Tribodynamic behavior of a novel double bearing layout for the main shaft system of wind turbines. Tribol Int 2024, 195, 110496. https://doi.org/10.1016/j.triboint.2024.110496.
- 23. SKF. Wind turbine main shaft bearing design considerations, 2019. Retrieved from https://www.skf.com/ph/news-and-events/news/2019/2019-10-08-wind-turbine-main-shaft-bearing-design-considerations.
- 24. Hart E, Turnbull A, Feuchtwang J, McMillan D, Golysheva E, Elliott R. Wind turbine main-bearing loading and wind field characteristics. Wind Energy 2019, 22, 1534–1547. https://doi.org/10.1002/we.2386.
- 25. Eggers AJ, Digumarthi R, Chaney K. Wind shear and turbulence effects on rotor fatigue and loads control. J Sol Energy Eng 2003, 125(4), 402. https://doi.org/10.1115/1.1629752.
- 26. Cardaun M, Roscher B, Schelenz R, Jacobs G. Analysis of wind-turbine main bearing loads due to constant yaw misalignments over a 20 years timespan. Energies 2019, 12, 1768. https://doi.org/10.3390/en12091768.
- 27. Brand AJ, Peinke J, Mann J. Turbulence and wind turbines. J Phys Conf Ser 2011, 318, 072005. https://doi.org/10.1088/1742-6596/318/7/072005.
- 28. Lee S, Churchfield M, Moriarty P, Jonkman J, J. Michalakes J. Atmospheric and wake turbulence impacts on wind turbine fatigue loadings. AIAA 2012-540, 50th AIAA Aerosp Sci Meet, 2012. https://doi.org/10.2514/6.2012-540.
- 29. Krathe VL, Thedin R, Jonkman JM, et al. Main bearing response in a waked 15-MW floating wind turbine in below-rated conditions. Forsch Ingenieurwes 2025, 89, 37. https://doi.org/10.1007/s10010-025-00808-z.
- 30. Heege A, Hemmelmann J. Matching experimental and numerical data of dynamic power train loads by modeling of defects. Wind Energy 2015, 18, 541–558. https://doi.org/10.1002/we.1711.
- 31. Sethuraman L, Guo Y, Sheng S. Main bearing dynamics in three-point suspension drivetrains for wind turbines. NREL, AWEA WINDPOWER, Orlando, FL, 2015. Retrieved from https://docs.nrel.gov/docs/fy15osti/64311.pdf.
- 32. Gaertner E, et al. Definition of the IEA 15-megawatt offshore reference wind turbine (NREL/TP-5000-75698), NREL, 2020. Retrieved from https://www.nrel.gov/docs/fy20osti/75698.pdf.
- 33. WISDEM. WISDEM software, GitHub, 2024. Retrieved from https://github.com/WISDEM/WISDEM.
- 34. International Electrotechnical Commission. IEC 61400-1: Wind turbines – Part 1: Design requirements, 2019, ed. 4.0.
- 35. Mann J. Wind field simulation. Probabilist Eng Mech 1998, 13(4), 269–282. https://doi.org/10.1016/S0266-8920(97)00036-2.
- 36. Liew J. jaimeliew1/Mann.rs: Publish Mann.rs (v1.0.0), Zenodo, 2022. https://doi.org/10.5281/zenodo.7254149.
- 37. Hansen MH, Henriksen LC. Basic DTU Wind Energy Controller (DTU Wind Energy Report E-0018), DTU Wind Energy, 2013.
- 38. Zhang R, Song C, Zhou Y, Tan J, Zeng Z. Dynamic performances of novel misaligned non-uniform distributed tilting-pad bearing. Int J Mech Sci 2024, 289, 109020. https://doi.org/10.1016/j.ijmecsci.2024.109020.
- 39. Jassmann U, Pausch M, Fischer F, Krebs M. Model predictive control of a wind turbine modelled in Simpack. J Phys Conf Ser 2014, 524, 012047. https://doi.org/10.1088/1742-6596/524/1/012047.
- 40. Branagan L. Water lubricated bearings with lignum vitae: environmentally sound choice. 18th EDF/Pprime Workshop, 2019.
- 41. Dong C, Zhou X, Yan L, Zhang Y. Effects of anisotropy of lignum vitae wood on its tribological performances. Compos B Eng 2022, 228, 109426. https://doi.org/10.1016/j.compositesb.2021.109426.
- 42. Wu Z, Zhu Y, Li J, Zhang H. Lignum vitae wood-derived composites for high lubricating performance. J Clean Prod 2023, 406, 137086. https://doi.org/10.1016/j.jclepro.2023.137086.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bf29c46-b4ae-4faf-ac42-79de6214c65f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.