PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of mechanical properties of bone trabeculae as an inverse problem of heterogeneous material modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the trabecular bone was treated as a composite material that consists of a bone matrix weakened by ellipsoidal pores. Under the hypothesis that all information concerning the local properties and the microarchitecture are “encrypted” in the apparent properties of a given volume element (VE) of the bone, a method of retrieving these data was proposed. Software based on a genetic algorithm, combined with the incremental scale transition method was developed to this end. To test the approach, μCT measurements of four bone samples were performed providing their real micro-architecture. Tensors of apparent properties of the samples were next computed by numerical (finite element) homogenization method for a large range of the elastic properties of trabeculae. They were considered as the fitness function for the proposed algorithm. Very good agreement was found between the obtained and target values of the apparent elastic properties of the samples and volume fraction of pores. The approach is fast and accurate enough in comparison to the finite element homogenization. As an auxiliary result it was shown that the anisotropy of apparent elastic properties is mainly related to the microarchitecture of the bone, not to the intrinsic properties of trabeculae.
Rocznik
Strony
385--414
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • Faculty of Physics and Applied Computer Science (WFiIS), AGH– Universityof Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • Faculty of Physics and Applied Computer Science (WFiIS), AGH– Universityof Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • LEM3, Université de Lorraine, Ecole Nationale d’Ingénieurs de Metz, 1 Route d’ArsLaquenexy, BP 65820, 57 078 Metz Cedex 03, France
autor
  • LEM3, Université de Lorraine, Ecole Nationale d’Ingénieurs de Metz, 1 Route d’ArsLaquenexy, BP 65820, 57 078 Metz Cedex 03, France
autor
  • Faculty of Physics and Applied Computer Science (WFiIS), AGH– Universityof Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
Bibliografia
  • 1. R.B. Ashman, S.C. Cowin, W.C. Van Buskirk, J.C Rice, A continuous wave technique for the measurement of the elastic properties of cortical bone, Journal of Biomechanics, 17, 5, 349–361, 1984.
  • 2. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E Moore, S.A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, Journal of Biomechanics, 32, 1005–1012, 1999, doi:10.1016/S0021-9290(99)00111-6.
  • 3. J.Y. Rho, R.B. Ashman, C.H. Turner, Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, Journal of Biomechanics, 26, 111–119, 1993, doi:10.1016/0021-9290(93)90042-D.
  • 4. C.H. Turner, J.Y. Rho, Y. Takano, T.Y. Tsui, G.M. Pharr, The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques, Journal of Biomechanics, 32, 437- 441, 1999, doi:10.1016/S0021-9290(98)00177-8.
  • 5. S. Lorenzetti, R. Carretta, R. Müller, E. Stüssi, A new device and method for measuring the elastic modulus of single trabeculae, Medical Engineering & Physics, 33, 993–1000, 2011.
  • 6. L.J. Gibson, M.F. Ashby, The mechanics of 3-dimensional cellular materials, Proceeding of the Royal Soiety of London, A, 382, 43–59, 1982.
  • 7. G. Bevill, S.K. Easley, T.M. Keaveny, Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site, Journal of Biomechanics, 40, 3381–3388, 2007.
  • 8. D. Van Rietbergen, B. Weinans, R. Huiskes, A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, Journal of Biomechanics, 28, 69–81, 1995.
  • 9. D. Ulrich, D. Van Rietbergen, H. Weinans, H. Ruegsegger, Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques, Journal of Biomechanics, 31, 1187–1192, 1998.
  • 10. Ł. Cyganik, M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechała, R. Nowak, Z. Wróbel, A. John, Prediction of Young’s modulus of trabeculae in microscale using macro-scale’s relationships between bone density and mechanical properties, Journal of the Mechanical Behavior of Biomedical Materials, 36, 120–134, 2014.
  • 11. S. Ilic, K. Hackl, K.R. Gilbert, Application of the multiscale FEM to the modeling of cancellous bone, Biomechanics and Modeling in Mechanobiology, 9, 87–102, 2010.
  • 12. P. Kowalczyk, Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells, Journal of Biomechanics, 36, 961–972, 2003.
  • 13. M.J. Silva, L.J. Gibson, Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure, Bone, 21, 191–199, 1997.
  • 14. W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Annals of Physics, 38, 185–192, 1889.
  • 15. A. Reuss, Berechnung der Fließgrenzevon Mischkristallen auf Grund der Plastizittatsbedingung fur Einskristalle, Journal of Applied Mathematics and Mechanics, 9, 49–58, 1929.
  • 16. R. Hill, A self-consistent mechanics of composite materials, Journal of the Mechanics of Solids, 13, 213–222, 1965.
  • 17. P.H. Dederichs, R. Zeller, Variational treatment of the elastic constants of disordered materials, Journal of Solid State Physics, 259, 103–113, 1973.
  • 18. J.R. Willis, Variational and related methods for the overall properties of composites, Advances in Applied Mechanics, 21, 1–78, 1981.
  • 19. L.J. Walpole, Elastic behaviour of composite materials: theoretical foundations, Advances in Applied Mechanics, 169–242, 1981.
  • 20. O. Fassi-Fehri, A. Hihi, M. Berveiller, Multiple site self consistent scheme, International Journal of Engineering Science, 27, 495–502, 1985.
  • 21. P. Lipinski, Modélisation du comportement des métaux, en transformations élastoplastiques finies, à partir des méthodes de transition d’échelles, Habilitation Thesis, Université de Metz, Metz, 1993.
  • 22. T. Mori, T. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 571–574, 1973.
  • 23. E. Kröner, H. Koch, Effective properties of disordered materials, Symposium on Micromechanics Archives, 1, 183–238, 1976.
  • 24. E. Kröner, Bounds for effective elastic moduli of disordered materials, Journal of the Mechanics of Solids, 25, 137–155, 1977.
  • 25. A. Broohm, P. Zattarin, P. Lipinski, Prediction of mechanical behavior of inhomogeneous and anisotropic materials using an incremental scheme, Archives of Mechanics, 6, 949–967, 2000.
  • 26. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstante von heterogene Substanzen, Annuals of Physics, 416, 636–664, 1935.
  • 27. P. Viéville, P. Lipinski, Application du schéma autocohérent par étapes à la modélisation des propriétés viscoélastiques des composites, [in:] J.P. Favre, A. Vautrin [eds.], AMAC, JNC9 Saint-Etienne, France, 9, 545–554, 1994.
  • 28. L.A. Feldkamp, L.C. Davis, J.W. Kress, Practical cone-beam algorithm, Journal of the Optical Society of America, A6, 612–619, 1984.
  • 29. Reference Manual VGStudio Max Release 2.0, Volume Graphics GmbH Editor, 2013, http://www.volumegraphics.com/en/products/vgstudio-max/8.10.
  • 30. M. Doube, M.M. Kłosowski, I. Arganda-Carreras, F. Cordeliéres, R.P. Dougherty, J. Jackson, B. Schmid, J.R. Hutchinson, S.J. Shefelbine, BoneJ: free and extensible bone image analysis in ImageJ, Bone, 47, 1076–1079, 2010.
  • 31. N. Otsu, A threshold selection method from fray-level histograms, IEEE Travsactions on Systems, Man and Cybernetics, SMC9 l, 62–66, 1979.
  • 32. K. Janc, J. Kaminski, J. Tarasiuk, A.S. Bonnet, P. Lipinski, Homogenization of trabecular bone microstructure based on finite element method and micro computed tomography, 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain 1012–1017, 2014.
  • 33. W. Azoti, Y. Koutsawa, N. Bonfoh, P. Lipinski, S. Belouetar, On the capability of micromechanics models to capture the auxetic behavior of fibers/particles reinforced composite materials, Composites Structures, 94, 156–165, 2011.
  • 34. P. Viéville, A.S. Bonnet, P. Lipinski, Modeling effective properties of composite materials using the inclusion concept. General considerations, Archives of Mechanics, 58, 207–239, 2001.
  • 35. J.H. Holland, Adaptation in Natural and Artificial System, The University of Michigan, Press MIT Press Cambridge, MA, U.S.A., 1992.
  • 36. S.C. Cowin, M.M. Mehrabadi, Identification of the elastic symmetry of bone and other materials, Journal of Biomechanics, 22, 503–515, 1989.
  • 37. P. Zioupos, R.B. Cook, J.R. Hutchinson, Some basic relationships between density values in cancellous and cortical bone, Journal of Biomechanics, 41, 1961–1968, 2008.
  • 38. B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson, M. Viceconti, Mathematical relationships between bone density and mechanical properties, A literature review, Clinical Biomechanics, 23, 135–146, 2008.
  • 39. E. Cory, A. Nazarian, V. Entezari, V. Vartanians, R. Muller, B.D. Snyder, Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-ct based mineral density, Journal of Biomechanics, 43, 953– 960, 2010.
  • 40. H. Follet, S. Viguet-Carrin, B. Burt-Pichat, B. Dépalle, Y. Bala, E. Gineyts, F. Munoz, M. Arlot, G. Boivin, R.D. Chapurlat, P.D. Delmas, M.L. Bouxsein, Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone, Journal of Orthopaedic Research, 29, 481–488, 2011, doi:10.1002/jor.21275.
  • 41. E. Hamed, I. Jasiuk, A. Yoo, Y.H. Lee, T. Liszka, Multi-scale modelling of elastic moduli of trabecular bone, Journal of the Royal Society Interface, 9, 1654–1673, 2012, doi:10.1098/rsif.2011.0814.
  • 42. S.N. Musy, G. Maquer, J. Panyasantisuk, J. Wandel, P.K. Zysset, Not only stiffness, but also yield strength of the trabecular structure determined by non-linear μFE is best predicted by bone volume fraction and fabric tensor, Journal of the Mechanical Behavior of Biomedical Materials, 65, 808–813, 2017.
  • 43. K. Janc, Micromechanical modeling of bone elastic properties based on computed tomography, Doctoral Thesis, AGH – University of Science and Technology, Poland, Lorraine University, France, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bf19d2a-d49b-465e-96c1-5c2e6e1e2c9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.