Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Spatial analysis of carbonate pore system based on digital image analysis of X-ray microtomography data using Python language
Języki publikacji
Abstrakty
The main aim of this contribution is to combine a Python-supported analysis of X-ray microtomography (µCT) images and the transmitted-light microscopy to resolve the factors controlling the variability of petrophysical parameters in carbonate rocks. A self-developed Python script for the evaluation of pore connectivity and the computation of pore sizes based on µCT data was prepared. The script was launched on a carbonate sample with drawn from a drill core representing the Late Permian Zechstein Limestone (Ca1) formation from the Wolsztyn Ridge area in West Poland. The sample was taken from the upper part of the isolated Kokorzyn Reef, corresponding to a brachiopod and bivalve-rich zone. The plug had a cylindrical shape, the diameter of 2.54 cm and the height of approximately 4.6cm. The entire volume of the plug was scanned using a GE Nanotom Sdevice. The 3D-reconstructeddatasetobtainedwith spatial resolution of 0.02 mm underwent cropping, contrast adjustment, noise reduction and porosity extraction using open-source Fiji software. The binarized porosity image was loaded into the Python script. Python scripting was found efficient in carbonate pore system examination. The code first extracted the connected pore system of the largest volume and computed the smallest distances between porosity voxels and corresponding pore walls. The obtained results were confronted with the spatially-adjusted microphotographs taken in plane-polarized transmitted light. The results have shown that narrow and isolated pores occurred within the spines of brachiopods. The largest voids were found inside the brachiopod shells. Moreover, many pores were associated with partially dissolved fragments of bivalves. Porosity reduction was -most outlined in the zones showing the scarcity of fossils.
Czasopismo
Rocznik
Tom
Strony
357--360
Opis fizyczny
Bibliogr.14 poz., rys., tab.
Twórcy
autor
- AGH, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Geologii, Geofizyki i Ochrony Środowiska, al. Mickiewicza 30, 30-059 Kraków
autor
- AGH, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Geologii, Geofizyki i Ochrony Środowiska, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
- 1. ARNS C.H., BAUGET F., LIMAYE A., SAKELLARIOU A., SENDEN T.J., SHEPPARD A.P., SOK R.M., PINCZEWSKI W.V., BAKKE S., BERGE L.I., ØREN P.-E., KNACKSTEDT M.A. 2005 - Pore-scale characterization of carbonates using X-Ray microtomography. SPE J., 10: 475-484.
- 2. DOHNALIK M., JARZYNA J. 2015 - Determination of reservoir properties through the use of computed X-ray microtomography - eolian sandstone examples. Geol. Geophys. Environ., 41: 223-248.
- 3. DRABIK K., URBANIEC A., MIKOŁAJEWSKI Z., DOHNALIK M. 2018 - Przykłady zastosowania metody rentgenowskiej tomografii komputerowej (CT) rdzeni wiertniczych w analizie skał węglanowych. Wiad. Naftowe i Gazownicze, 21: 4-10.
- 4. ESRAFILI-DIZAJI B., RAHIMPOUR-BONAB H. 2019 - Carbonate reservoir rocks at giant oil and gas fields in SW Iran and the adjacent offshore: a review of stratigraphic occurrence and poro-perm characteristics. J. Pet. Geol.,42: 343-370.
- 5. GOUILLART E., NUNEZ-IGLESIAS J., VAN DER WALT S. 2016 - Analyzing microtomography data with Python and the scikit image library. Adv. Struct. Chem. Imag., 2: 18.
- 6. KELLER A. 1998 - High resolution, non-destructive measurement and characterization of fracture apertures. Int. J. Rock Mech. Min. Sci., 35: 1037-1050.
- 7. KRAKOWSKA P., MADEJSKI P. 2019 - Research on fluid flow and permeability in low porous rock sample using laboratory and computational techniques. Energies, 12: 4684.
- 8. LEŚNIAK G. 1999 - Zastosowanie komputerowej analizy obrazu w badaniach petrofizycznych. Prz. Geol., 47: 644-651.
- 9. RAZIPERCHIKOLAEE S., COTTER Z., GUPTAN. 2021 - Assessing mechanical response of CO2 storage into a depleted carbonate reef using a site-scale geomechanical model calibrated with field tests and In SAR monitoring data. J. Nat. Gas. Sci. Eng., 86: 103744.
- 10. SCHOLLE P.A., ULMER-SCHOLLE D.S. 2003 - A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Memoir, 77, Tulsa.
- 11. STRZELECKI P.J., FHEED A., RACZYŃSKI P. 2020 - 3D geometric evaluation of porosity types in carbonates. AIP Conf. Proc., 2209: 030002-1-030002-7.
- 12. VAN GEET M., LAGROU D., SWENNEN R. 2003 - Porosity measurements of sedimentary rocks by means of microfocus X-ray computed tomography (µCT). [W:] MEES F., SWENNEN R., VAN GEET M., JACOBS P. (red.), Applications of X-ray computed tomography in the Geosciences. Geol. Soc. Spec. Pub., 215, Londyn: 51-60.
- 13. WALSH R., OTHMAN N., CALDERN., STERLING S., AVIS J. 2018 - Combining TOUGH2 and FLAC3D to solve problems in underground gas storage. Transp. Porous Med., 123: 501-519.
- 14. ZALEWSKA J., DOHNALIK M., SIKORA G. 2009 - Możliwości rentgenowskiej tomografii komputerowej w rozpoznawaniu, obrazowaniu i szacowaniu wielkości szczelin. Nafta-Gaz, 65: 296-303.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2becac13-2b52-4cd9-8db1-e98f9df66f2c