Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In practical open channel hydraulics, critical flow relationships play a crucial role in understanding and analyzing flow conditions. The critical depth for a given cross section for a constant flow rate is calculated on the basis of the specific energy concept, which was first introduced by Bakhmeteff in 1912. The section in the water channel where critical flow occurs and the subcritical flow passes into supercritical flow is often used in hydraulic calculations as the control section. The article presents some practical aspects and considerations related to the relationships between depth, velocity head, and specific energy for critical flow in typical cross-sections of open channels, as well as the dependence of these elements in rectangular, triangular, trapezoidal, power-law and circular crosssections of channels. In the case of rectangular cross sections, asymmetric triangular cross sections or cross sections described by a power function, it is necessary to prove that there are constant algebraic relations, independent of the flow rate, for the critical depth. In trapezoidal, circular, or natural cross sections, for which there are no explicit dependencies for the critical depth, the calculated values of relationship between the critical depth, the height of the critical velocity and the energy head are not constant and tend to vary with the width of the cross-section and the flow rate. The article presents characteristic values between the critical depth, the height of the critical velocity, and the energy head for trapezoidal and circular cross sections.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
7--21
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Warsaw University of Life Sciences, Institute of Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Life Sciences, Institute of Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Life Sciences, Institute of Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Life Sciences, Institute of Environmental Engineering, Warsaw, Poland
Bibliografia
- [1] Aiyesimoju, K.O., (2010). Universal specific energy curve for parabolic open channels. J. Sci. Technol. (Ghana), 30 (1), pp. 151–157.
- [2] Bakhmeteff, B.A., (1912). O neravnomernom dwijenii jidkosti v otkrytom rusle (Varied Flow in Open Channel). St Petersburg, Russia (in Russian).
- [3] Bakhmeteff, B.A., (1932). Hydraulics of open channels, 1st Ed., New York: McGraw–Hill.
- [4] Bélanger, J.B., (1828). Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes (Essay on the numerical solution of some problems relative to steady flow of water). Carilian-Goeury, Paris (in French).
- [5] Bélanger, J.B., (1849). Notes sur le Cours d’Hydraulique. (Notes on the Hydraulics Subject). Mém. Ecole Nat. Ponts et Chaussées (Paris, France) (in French).
- [6] Bos, M.G. (1976). Discharge measurement structures. 161. Ilri.
- [7] Chanson, H., (2004). The hydraulics of open channel flows: An introduction, 2nd Ed., Oxford, U.K.: Butterworth-Heinemann.
- [8] Chow, V.-T., (1959). Open channel hydraulics. New York: McGraw-Hill.
- [9] Henderson, F.M., (1966). Open channel flow. New York: The MacMillan Comp.
- [10] Houghtalen, R.J., Akan, A.O., and N.H.C. Hwang, (2010). Fundamentals of hydraulic engineering systems. Edition 4. Pearson Education.
- [11] Rouse, H., (1946). Elementary Mechanics of Fluids. Inc., New York: Dover Publications.
- [12] Streeter, V.L., (1971). Fluid mechanics. New York: McGraw-Hill.
- [13] Subramanya, K., (2015). Flow in open channels. New Delhi: McGraw Hill Education (India) Private Limited.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bec0276-9229-4baa-a273-c6a8e5eec8eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.