Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we obtain existence results of k distinct pairs nontrivial solutions for an impulsive boundary value problem of p(t)-Kirchhoff type under certain conditions on the parameter λ.
Czasopismo
Rocznik
Tom
Strony
631--649
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Laboratory of Fixed Point Theory and Applications Department of Mathematics E.N.S. Kouba, Algiers, Algeria
autor
- Laboratory of Fixed Point Theory and Applications Department of Mathematics E.N.S. Kouba, Algiers, Algeria
autor
- School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Ireland
Bibliografia
- [1] A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007.
- [2] A. Castro, Metodos Variacionales y Analisis Funcional no Lineal, X Coloquio Colombiano de Matematicas, 1980.
- [3] J. Chabrowski, Y. Fu, Existence of solutions for p{t)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), 604-618.
- [4] H. Chen, J. Li, Variational approach to impulsive differential equation with Dirichlet boundary conditions, Bound. Value Probl. 2010 (2010), 1-16.
- [5] D.C. Clarke, A variant of the Lusternik-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972), 65-74.
- [6] F.J.S.A. Correa, CM. Figueiredo, On an elliptic equation of p-Kirchhoff-type via variational methods, Bull. Aust. Math. Soc. 74 (2006), 263-277.
- [7] F.J.S.A. Correa, G.M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), 819-822.
- [8] G. Dai, J. Wei, Infinitely many non-negative solutions for a p(t)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), 3420-3430.
- [9] L. Diening, P. Harjulehto, P. Hasto, M. Rużićka, Le.be.sgue and Sobolev spaces with variable exponents, Lectures Notes in Mathematics, 2011.
- [10] X.L. Fan, Q.H. Zhang, Existence of solutions for p(t)-Laplacian Dirichlet problem,, Nonlinear Anal. 52 (2003), 1843-1852.
- [11] X.L. Fan, D. Zhao, On the spaces Lp(t) and Wm'p(t), J. Math. Anal. Appl. 263 (2001), 424-446.
- [12] M. Galewski, D. O'Regan, Impulsive boundary value problems for p{t)-Laplacian's via critical point theory, Czechoslovak Math. J. 62 (2012), 951-967.
- [13] M. Galewski, D. O'Regan, On well posed impulsive boundary value problems for p{t)-Laplacian's, Math. Model. Anal. 18 (2013), 161-175.
- [14] O. Kavian, Introduction a la Theorie des Points Critiques et Applications aux Problemes Elliptiques, Springer-Verlag, 1993.
- [15] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.
- [16] I. Peral, Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
- [17] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Conference board of the mathematical sciences, American Mathematical Society, Providence, Rhode Island, 1984.
- [18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bebfe88-415d-44a9-905a-aadd9eb5fd2b