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1. INTRODUCTION

We study the multiplicity of nontrivial solutions for the problem

T ’
—(a—i—b{ﬁhﬂ(tﬂp(” dt)(\u’(t)|”(t)’2~u’(t)) = Ah(t,u(t)), t#t;, tel0,T],

CAU() = L(ulty), j=1,2,....1, (1.1)
w(0) = w(T) = 0,

where 0 = tp < t1 < ... <t < ti41 = T, A > 0 is a numerical parameter, h is

a Carathéodory function, I; € C(R,R), j = 1,2,...,1, Av/(¢;) = u’(tj') —u'(t)),

u’(t;r) and u'(t;) denote the right and left derivative of uw at t =;, j = 1,2,...,l.
Here p is a function in C([0,T],R) with

1<p™ = inf p(t) <p" = sup p(t),
t€[0,T] te[0,T)

and a, b are positive constants.
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Impulsive problems for the p(t)-Laplacian were introduced in [12] and [13]. In [4]
the authors considered

u’(t) + Mh(t,u(t) =0, t#t;, tel0,T],
=Ad'(t)) = Ii(u(ty), J=12,....1

and the goal in this paper is to generalize the results so that (1.1) can be considered.
The variable exponent Lebesgue space LP(®)(0,T) is defined by

T
Lr®(0,7) = {u :(0,T) - R is mesurable,/|u(t)|p(t) dt < —l—oo}
0
endowed with the norm

T
t)
u|p(t)=inf{)\>02/’u§\t) dtSl}.
0

The variable exponent Sobolev space WP (0, T) is defined by

Wl’p(t)(O,T) ={ue p® 0,7): 4 € p® (0,7}

endowed with the norm |Jully p) = [ulpe) + [0/ ]pe)-

Denote by C([0,T]) the space of continuous functions on [0,7] endowed with
the norm |ufoe = supe(o 1) [u(t)|. Now Wol’p(t)((), T) denotes the closure of C§°(0,T)
in Whr(®) (0, 7).

Proposition 1.1 ([11]). LM (0,T), W2®(0,T) and Wi (0,T) are separable,
reflexive and uniformly convexr Banach spaces.

Proposition 1.2 ([11)). For any u € LPM(0,T) and v € LI®(0,T), where
(t) + q(t) =1, we have

‘/uvdt‘ >|u|p(t)|v|q(t

Proposition 1.3 ([11]). Let p(u fo lu(t)|P® dt. For any u € LPW(0,T), the
following assertions hold.

—

Foru0, |u\pt>—mp(%)
[ulpey < 1(=1;>1) & p(u) 1(_ 1> 1)
If |ulpey > 1, then |u|§g p(u) < |u|
Af |ulpey < 1, then |u|§( plu) < |ul?

p(t)”

> W N

p(t)°
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Proposition 1.4 ([11]). If u,u, € LPM(0,T), k= 1,2,..., then the following state-
ments are equivalent:

1. lim |ug — ulpe =0 (ie. up — u in LPH(0,T)),

k——+oco
2. kgr—&l-loo plug —u) =0,
3. ur — u in measure in (0,T) and lim p(ur) = p(u).

k—+o0

Proposition 1.5 ([9]). The Poincaré-type inequality holds, that is, there exists a
positive constant ¢ such that

lulpy < el lpwys  for all we WD (0,T).

Thus |u'[,) is an equivalent norm in w, P (t)(O,T ). We will use this equivalent
norm in the following discussion and write |lu| = |u'|, ) for simplicity.

We now recall the Krasnoselskii genus and information on this may be found
in [1,2,14,15]. Let E be a real Banach space. Let us denote by 3 the class of all closed
subsets A C E\{0} that are symmetric with respect to the origin, that is, u € A
implies —u € A.

Definition 1.6. Let A € ¥. The Krasnoselskii genus v(A) is defined as being the
least positive integer n such that there is an odd mapping ¢ € C(A,R" \ {0}). If such
n does not exist, we set y(A) = +o00. Furthermore, by definition, v(0) = 0.

Theorem 1.7 ([14]). Let E = RY and 09 be the boundary of an open, symmetric
and bounded subset @ C RN with 0 € Q. Then v(0Q)) = N.

Note y(SN~!) = N. If E is infinite dimension and separable and S is the unit
sphere in E, then v(S5) = 4oo0.

Proposition 1.8 ([14]). Let A, B € ¥. Then, if there exists an odd map f € C(A, B),
then v(A) < v(B). Consequently, if there exists an odd homeomorphism f: A — B,
then v(A) = v(B).

Definition 1.9. Let J € C'(E,R). If any sequence (u,,) C E for which (J(u,)) is
bounded and J'(u,) — 0 when n — 400 in E’ possesses a convergent subsequence,
then we say that J satisfies the Palais-Smale condition (the (PS) condition).

‘We now state a theorem due to Clarke.

Theorem 1.10 ([5,17]). Let J € C1(E,R) be a functional satisfying the Palais-Smale
condition. Also suppose that:

1) J is bounded from below and even,
2) there is a compact set K € ¥ such that v(K) =k and sup,cx J(x) < J(0).

Then J possesses at least k pairs of distinct critical points and their corresponding
critical values are less than J(0).
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Definition 1.11. We say that u € Wol’p(t)(O7 T) = X is a weak solution of Problem
(1.1) if and only if

T T T
a L u ()P W (D1PO=2 (e _ Wt
(+bzmw“” w)!@n (' (¢) d A!h@(m(ﬂﬁ
l
+ 2 Liult))u(t;)

for all v € X.

In Section 2 we will use the following elementary inequalities (see [16]): for all
z,y € R, we have

N N 1 N
(2?02 = PO 2y —y) = slo— gl i p() 22 (12)
and
2
(1aPO2 — PO 2y — ) > (o) - 1) — U 1< p) <2 (13)
T R = T a0 TSP
Remark 1.12. Note (1.2) implies
N N 1 N
(2”072 — [P 2y) (@ = y) > ol — " if p() > 2. (1.4)
Also (1.3) implies
IOR PO
N N P 1 x —ylP
(P2 — 2@ —y)] * = - (15)

V2 (JafpO) + Jylp)E2
if 1 < p(-) < 2. To see this note for any z,y € R and 1 < p(-) < 2, from (1.3) we have
p()

N N i B x—yp(')
(a2 = lyPO-2g) (@ —3)] * = (- )— =W
(] + IO

and now using
(] + )P0 < 27071 (2P o ylp) < 2(Jafp) + )
we obtain
p() .
N N e B 1 |z — [P
(lof"O20 — [yPO-2y) (@ = 9)] T = (07 ~ D= —
272 (Jz[pO) + [y|pO)) 2
p~—1 |z — y|P*)
()
V2 (gl 4 pyp)

>
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2. MAIN RESULTS

Theorem 2.1. Assume the following are satisfied.

(h1) There exist o, 3 € L*(0,T) and a continuous function v : [0,T] — R such that
0 <" = sup;eior¥(t) < 2p7 — 1 with

Ih(t,w) < at) + BOW®  for any () € [0,T] x R.
(h2) h(t,u) is odd with respect to u and H(t,u) = [ h(t,£) dé > 0 for every (t,u) €
[0, T] x R\ {0}.
(hs) Ij(u) (j =1,2,...,1) are odd and [, I;(s) ds <0 foranyu e R (j =1,...,1).

Then for any k € N, there exists a A such that when A > A, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. The corresponding functional to Problem (1.1) is defined as follows:

T T
w=a | Lworoas( [ Livoroa)’
ol = a [ s e+ 3 ([ —hp® ar)
0 0 (2.1)

From (h1) and the fact that I; € C(R,R) it is easy to see that ¢ € C'(X,R) and
for all u,v € X

T T
@' (u)-v= (aer/(lt )P (1) dt /\u' NE (t)—2 o (B0 (t) dt
0 0

!

(2.2)

Thus the critical points of ¢ are the weak solutions of (1.1).
First we show that ¢ is bounded from below. From the continuous embedding of
X in C([0,T]), for any v € X with ||u|| > 1, we have that

T T
/ Ju(t)" O dt < / |10 dt < eTllul Y, (2.3)
0
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where ¢ = max¢c(p, 1) cg(t)ﬂ and cg is the best constant of the continuous embedding.
It follows from conditions (h1), (h2), (hs) and (2.3) that

a - - +
ZFIIUIIP + [ullP™ = el preollull = AlBlzscllull” *,

2(pt)?

for any u € X with |lul| > 1. Since ¥ < 2p~ — 1, then lim,|_ 4o ¢(u) = 400 and
consequently, ¢ is bounded from below.

Next, we show that the functional ¢ satisfies the (PS) condition. Now for any
u € X with |lul]| <1, it is easy to see that

a + + _
pu) = —ull” + |ul|*P" = e rcol|ull = AlBleful|” 1 (2.5)

b
p 2(p*)?

Let (u,) C X be a Palais-Smale sequence for ¢, i.e. (¢(uy,)) is a bounded sequence
and lim,, 1 ¢'(u,) = 0. Thus there exists a positive constant B such that

o(un) < B. (2.6)

From (2.4), (2.5), (2.6) and since v© < 2p~ — 1, in all cases we deduce that the
sequence (u,) is bounded in X. Thus, passing to a subsequence if necessary, there
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exists u € X such that u, — u weakly in X. Moreover, by (2.1) and (2.2), we have

(@/(un) - 90/(“)) : (“n - u)

= (a Ti u’ p(t) r o’ p(t)—2u/ u '
= (a+ / P dr) / o ()P0, (0) o, (1) — (1))
1 T
= 1)) 1) () ~ N [ Bt (8)) (6) — (1))
j=1 0

- @ ()P (O PO=20 () () (£) —
( +b/p(t)' ®l dt)/' ()] (6)(l (1) — ' (1)) dt

I T
30 ) () — () + A [ Bt (0 (1) — ()
’ T 1 T ’
—(a I Y p(t) o p(t)72u/ ul !
= (a+o / gl () dr) / ol (0) P2, 1) (1) — o (1)

Since the embedding of X in C([0,77]) is compact, then (u,) uniformly converges to u
in C([0,TY), by using (h;) and the Lebesgue Dominated Convergence Theorem, we
have that

T
)\/ (h(t,un(t)) - h(t,u(t))) (un(t) - u(t)) dt — 0,
0 (2.7)

Z (Ij(un(tj) - Ij(u(tj)) (Un(tj) - U(tj)) — 0, as n — oo.

Since ¢’(u,) — 0 and u,, — u in X, then we have (¢'(u,) — ¢'(v)) - (up —u) — 0
as n — 0o.
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Consequently, from (2.7) we have S,, — 0 as n — oo, where

= (a Ti u/ p(t) r u/ p(t)—2u/ u/ _ u/
&r—(+b!pmnw| ﬁ)JAﬂI (00 (1) — o (1) dt

T

a L (1) Tu/ (=207 (1) (! (£) — o
( +b0/p(t) ) dt>0/ ()] (£) (ul () — (1)) dt.

We can rewrite S,, as

T
1
S, = a+b/—\u’ (1)P d)

[ PO — (000 1) — ')

0

+(a+bo/p(1t (1) dt) /\u () PO2 (£ (£) — ' (8)) dt

T

a+b/p(1t |u'(t) P (t) dt /‘u )P (t)—2 o () (ol (£) — o (1)) dt.
0

From the weak convergence of (u,) in X, and since |u/[PW 2/ € X' = Wol’Q(t)(O, T)

with ¢(t) = p(’;()tzl, we deduce that

/ ! (OO =20 ()l (8) — o () dE — 0 as n— oo. (2.8)

Hence, from (2.8) and since S,, — 0, we get
T

a T 1 u()P® u (D1PO=20" () — 1! (1) 1PO—24! o (F) !
( +b0/p(t) ()] dt>0/( ' ()] ! (#)— | (2)] (1)) (ul (£) ' () dt = 0

as n — o0o. Since a,b > 0, then we have
T

/ (\u;l(t)|p(t)_2u;(t) — [/ () |PO720 (1)) (uly (£) — W/ (t)) dt — 0 as n — oo, (2.9)
0

To complete the proof of the Palais-Smale condition we follow the argument in the proof
of Theorem 3.1 in [3]. We divide I = (0,7') into two parts

L={te(0,T):1<p() <2}, L={te(0,T):p()>2}.
We will let | - |7, @ = 1,2, to denote the norm in LP®)(I;).
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On I, from Holder’s inequality (See Proposition 1.2) and using the inequality (1.5)
we get

[ 1) = w P ae
Iy

< p—\/_§ 1 / ((|u/n(t)|p(t)72uil(t) — |ul(t)‘p(t)*2u/(t))(u;(t) B u/(t))) p;)
2—p(t)
< (PO + (0PO)
p(t)
< C’ <(|u/n(t)|p(t)72uil(t) — |ul(t)|p(t)*2u/(t))(u;l(t) B u’(t))) 2 L,

2—p(t)
2

< | (@O + ' 1))

)

2
5=p(0y 11

where ¢ = M. From (2.9) we get
2(p~—1)

p(t)

| (e OFO~2a, (8) = ! OFO 20 (1)) (wy(6) = /(1))

) —0 as n — oo.

oy

Now using [, (Jus, () [P® + [’ (£)[P®)) dt is bounded we get

/ ul, (1) — ' ()P dt -0 as n— oo. (2.10)

I

On I, from the inequality (1.4) we have

[0 =a @ e <2 [ (u 0P O 20~ [ OFO 2 0) (w0 - (1) e,
I I
S0
/ [/ (t) —u' (PO dt -0 as n— oo. (2.11)
Iz
From (2.10) and (2.11) and by Proposition 1.4, we conclude that ||u, — u| — 0 as
n — 00, so  satisfies the Palais-Smale condition.

Notice that V[fol’p+ (0,7) C Wol’p(t)(O,T). Consider {ej,eg, ...}, a Schauder basis
of the space I/Vol’p+ (0,T) (see [18]), and for each k € N, consider X}, the subspace of
Wol’p+ (0,T) generated by the k vectors {ej,es,...,er}. Clearly X} is a subspace
of WP (0, T).

For r > 0, consider

k
Ru(r) = {ue Xi: Jul? = 32 =2},
=1
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For any » > 0. We consider the odd homeomorphism x : Ki(r) — S*~! defined
by x(u) = (&1,€2,...,&), where S¥71 is the sphere in R¥. From Theorem 1.7 and
Proposition 1.8, we conclude that v(Kj(r)) = k. Let 0 <1 < % where ¢ is the best

constant of the embedding of X in C([0,T1]), so |Jullec < collu|l < 1. It follows from
hypothesis (hz) that fOT H(t,u(t))dt > 0 for any u € Ki(r). Then

T
= inf [ Ht,u®))dt
o= nf / (¢, u(®))

is strictly positive (note the compactness of Ky (r)). If we set

1 u(tj)

v = inf I;(s) ds,
k ueKk(r)j; 0/ J()

we see that v, < 0. Let

1 (a - b _
A\ = — (Tp + — I/k>,
AN 2(p7)?

and note Ay > 0. Then when A > Ay, we take 0 < r < 1, and then for any u € Ki(r)
we have ||ul| < 1 and

T T
a b 2
< — [ W ()PP at (/ ’t”(t)dt) — U — A
ol <= [ wap e oo (e A
0 0
< Ll 4 PP — v — A
~p 2(p~)?
_ b _
< —1P 4 ——r® oy — M\, = 0.
P 2(p)?

Theorem 1.10 guarantees that the functional ¢ has at least k pairs of different critical
points. Hence, Problem (1.1) has at least & distinct pairs of nontrivial solutions. [

Corollary 2.2. Assume that (hy) and (hs) hold, and
(hq) h(t,u) is bounded.

Then for any k € N, there exists a A\, such that for any A > A\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Theorem 2.3. Assume that (h1) holds, and assume the following are satisfied.

(hs) There exist aj, B; >0 and v; with 0 <~; <2p~ —1(j =1,2,...,1) such that

[Ii(uw)| < o+ Bjlul” forany ueR (j=1,...,1).
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(he) h(t,u) and I;j(u) (j =1,2,...,1) are odd with respect to u and H(t,u) > 0 for
every (t,u) € [0,T] x R\ {0}.

Then for any k € N, there exists a A\, such that for any A > A\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. From assumptions (h;) and (hg), we see that ¢ € C'(X,R) is an even
functional and ¢(0) = 0. We now show that ¢ is bounded from below. Let
ap = max{ay,ag,...,q}, Bo = max{S,P2,...,0:}. We have for any v € X with
|lu]| > 1 that

ao/p(lt) )P (1) dt+2(0/p(1t)|u/(t)p(t) dt)2

T
—AO/H(t,u(t))dt—Z 0/ I;(s) ds

a P b 2p~ ~(t)+1
> —ull” + 2(p+)2llu\\ —/(a(t>lu(t)l+B(t)lu(t)|) o+

J (2.12)

l

= (ajlulty)] + Bjlult;) o)

j=1
a — b - +
> Sl o+ gl ladzacoull ~ |8luclul
1
— apleollull = Boc’ S 5+
j=1

Now, we show that ¢ satisfies the Palais-Smale condition. For any v € X with |Ju| <1,
we have

a + b + _
p(u) > pT”qu + 2(p+)? [ul " — |l Lreollull = |Blrellul” +1
: (2.13)
— aglel|ull = Boc Y fluf 7+
=1

Let (u,) C X be a sequence such that (¢(u,)) is a bounded sequence and ¢'(u,) — 0
in X’. From (2.12), (2.13), and since y*,7; < 2p~ — 1, in all cases we deduce that
(uy) is bounded in X. The rest of the proof of the Palais-Smale condition is similar to
that in Theorem 2.1.

Consider K (r) as in Theorem 2.1. For any r > 0, there exits an odd homeomor-
phism y : Kj(r) — S*~1. From assumption (hg) we have

wr = inf /H(t,u(t)) dt > 0.

u€ Ky (r)
0
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Let

1 u(tj)

1 - b _

vy, = inf Z / I;(s)ds and M\, =max {0, —(%r” +—r? —Vk)}.
u€ Ky (r) = Kk \P

Then when A > A, we take 0 < r < 1, and then for any u € Kj(r) we have |Jul| <1

and

a - b op—
ou) < —rP 4+ —rP —uyp — Ay
p 2(p~)?
a - b -
< —rP + 2P~y — A < 0.

p- 2(p~)?
From Theorem 1.10, ¢ has at least k pairs of different critical points. Consequently,
Problem (1.1) has at least k distinct pairs of nontrivial solutions. O

Corollary 2.4. Assume that the assumptions (hy), (hg) hold, and
(h7) Iij(uw) (1 =1,2,...,1) are bounded.

Then for any k € N, there exists a A\, such that for any A > A\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Theorem 2.5. Assume that (hs) holds, and

(hs) There exists a constant o > 0 such that h(t,o) = 0,h(t,u) > 0 for every
ue (0,0),
(hg) h(t,u) is odd with respect to u.

Then for any k € N, there exists a A\, such that when X\ > X\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. Define the bounded function

0, if |u| > o,
tou) =
ftw) {h(t,u), if Ju| < o

Consider

T /
—(a—l—bbfﬁ\u’(tﬂp(t) dt)(|u'(t)|p<t>—2-u'(t)) = M(tu(t), t#t;,tel0,T],

SAd () = Gult), j= 1,200, (2.14)
u(0) = u(T) =0,

and we now show that solutions of Problem (2.14) are also solutions of Problem (1.1).
Let ug be a solution of Problem (2.14). We now prove that —o < ug(t) < o. Suppose
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that maxg<i<r uo(t) > o, then there exists an interval [dq,ds] C [0,T] such that
uo(dy) = up(dz) = o and for any t € (dy,ds) we have ug(t) > o, and so

p(t)

T
(a6 [ OP© de) (10 @OP©O2 () = At u6) =0, € (dy,da).

We deduce that there is a constant ¢ such that |u})(t)[P=2.u} (t) = c for any t € [dy, ds],
and since u((dy) > 0 and u((dz) < 0, then we have

g (dy) P72 uf(dy) = ¢ > 0,
‘“f)(d2)|p(d2)_2 'U()(d2) =c<0,

80, ug(t) = 0 for any t € [dy, ds], i.e. up(t) = o for any t € [d1, da], which is a contra-
diction. From a similar argument we see that ming<;<7 uo(t) > —o.
The functional ¢7 : X — R defined by

T
/ )P dt + = / L (t)|P® dt)2
J (1)

(2.15)
l
-3 / dsf)\/F(t,u(t))dt
Jj=1 0
is continuously Fréchet differentiable at any v € X, where F(t,u) fo
We have
T ) T
G -v=(atb / TOLACLa dt) / ! PO-24 (1) (8) dit
p
0 0 (2.16)

T
=S I (ulty)olt;) — A / St u())ot) dt
0

for all v € X. It is clear that ¢; is an even functional, ¢;(0) = 0 and bounded from
below. To see this note for u € X with |ju|| > 1 we have

T T u(t)
wl(u)Zl%/| '(t)[P® dt + 5 /|u t)[P®) dt —)\/ / f(t,s) dsdt
0 0
T ) T o
a
> 7/ (t)[P® dt + 5 2(/|u'(t)|p(t) dt) —)\//f(t,s) dsdt
0 0 0 0
N——
=7>0
a b -
> P 2T _ )\
oF [[ull” + e [l T



644 A. Mokhtari, T. Moussaoui, D. O’Regan

so it follows that ¢y is bounded from below. Let (u,) be a Palais-Smale sequence. It
is easy to see that (uy) is bounded in X and the rest of the proof of the Palais-Smale
condition is similar to that in the proof in Theorem 2.1.

Consider Kj(r) = {u € Xj, : ||u]| = r}. For any r > 0 the odd homeomorphism
X @ Ki(r) — Sk=1 gives y(Ky(r)) = k. Let 0 < r < min{1, Z}, where co is the
best constant of the embedding of X in C([0,T7]), 0 ||ul]le < coHuH < o for any

u € Ki(r). Using assumptions (hg) and (hg), we have F(t,u(t)) > 0 as u(t) # 0. Then
fOT F(t,u(t))dt > 0 for any u € Kj(r). If we set

T
= inf /F ))dt and v, = inf /Ij(s) ds,

u€Ky(r) ueKy(r) <
0 J=1

then pp > 0 and v < 0. Let

1 a - b _
A = — <rp 4+ _ I/k>,
[tk \ P~ 2(p~)?

so A > 0, and for any A > Ay and any u € Ky (r) with |lul] < 1 we have

a - b -
p(u) < pirp + 2(p7)27‘2p — Vi — Ak
a - b -
< = r’ + 2(p7)2r2p — v — At = 0.

From Theorem 1.10, @7 has at least k pairs of different critical points. Then, Problem
(2.14) has at least k distinct pairs of nontrivial solutions. Consequently, Problem (1.1)
has at least k distinct pairs of nontrivial solutions. O

A similar argument to that in Theorem 2.5, yields the following result.
Theorem 2.6. Let conditions (hs), (hs) hold and
(h1o) h(t,u) and I;(u) (j =1,2,...,1) are odd with respect to u.

Then for any k € N, there exists a A\, such that for any A > A\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Theorem 2.7. Suppose that (hs) holds, and

(h11) There exist a constant o1 > 0 such that h(t,o1) <0,
(hi2) h(t,u) and I;(u) (j = 1,2,...,1) are odd with respect to u and lim,_,q @ =1
uniformly for t € [0,T).

Then for any k € N, there exists a A\, such that for any A > A\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.
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Proof. Define the bounded function

h(t,o1), if u> oy,
g(t,u) = ¢ h(t,u), if |u| < oy,
h(t,—o1), ifu<—oy.

We will verify that the solutions of the problem

(a0 ] 5l OF© ) (W OFO-2 - (0) + Aglt.u(®) = 0, £ 1;, ¢ € 0.7,
0

—Au'(ty) = Li(u(ty), §=1,2....1, (2.17)
u(0) = u(T) = 0,

are solution of Problem (1.1). Let up be a solution of Problem (2.17). We prove
that —o1 < up(t) < oy for any t € [0,T]. Suppose that maxo<i<7 uo(t) > o1, then
there exists an interval [d1, ds] C [0,T] such that ug(d1) = up(d2) = o1 and for any
t € (d1,d2) we have ug(t) > o1, and then when t € (dy,d3) we obtain

T

1 / p(t / p(t)—2 / /_ _
(wwjmwwmﬂh@(%wﬂ>-%w)——mmwww=wwmnzo

Therefore, we deduce that
/
(I (P O2 (1)) >0, te (dr,dy),
thus t — [u)(t)[P(D=2 - uf(t) is nondecreasing in (dy,ds), so then
0 < Jup (da) "2 (d) < Jug (8P 2ug(t) < Jup(d2) [P~ 2ug(da) <0,
for every ¢ € [di,ds]. Hence ug, = 0 on [dy, ds], so, since ug(d1) = up(d2) = o1, then
u(t) = oy for every t € [dy, ds], which is a contradiction. From a similar argument we

see that ming<,<7 uo(t) > —o1, i.e. up is a solution of Problem (1.1).
We consider the functional ¢y : X — R defined by

p(0)"
0

T
1 1
pa(u) = a/p [/ ()P dt 4 ~ / —— |/ (t)|P® dt)
0 (2.18)

5 [ s foe
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where G(t,u) = [g(t,s) ds. Obviously, @2 is continuously Fréchet differentiable at
0
any v € X and

=B

T T
eh(w) v =(a+ O/ % (1) dt) 0/ ! ()P ~2 ()0 (1) dit

(2.19)

T
—§jzma»wwo—a/Mumwwmdu
0

for all v € X. It is clear that critical points of ¢y are solutions of Problem (2.17). Now
2 € C1(X,R) is an even functional and ¢2(0) = 0.
Let ap = max{ay,as,...,a1}, fo = max{p1,S2,..., 5}, and we see that

T T u(t) T o1

/ Gt u(t)) dt = / / ot s) dsdt < / / ot s) dsdt (2.20)

0

Using assumption (hs) and (2.20), we have for any v € X with [Ju|| > 1 that

’ 1 ’ 1
wﬂm=a/——|<wmw+ ([l ore )
0 0

p(t)

j=1 0 (2.21)
l
a b - .
>pj\| &8 +2(p+)2|\u||2” = (ajlulty)] + Bslult;)7+) = An
=1
l
a - b
> —|Jull” +2( )QHUIIQ” — agleollull = Boc' > [lul| P = A,

Jj=1

so it follows that @9 is bounded from below.
Now we show that (o satisfies the Palais-Smale condition. For any v € X with
lu]] <1, we have

b
2(p™)?

l
= foc’ Y Jull = .

j=1

a + +
olw) 2 = lul” lull*" — avleo]fu]

(2.22)

Let (uyn) C X be a sequence such that (¢(uy)) is a bounded sequence and ¢’ (uy,) — 0
as n — +oo. From (2.21), (2.22), and since 7,7; < 2p~ — 1, in all cases we deduce
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that (u,) is bounded in X. The proof of the Palais-Smale condition is now similar to
that in Theorem 2.1.

Consider Kj(r) as in Theorem 2.1. From assumption (hi2), for any € > 0, there
exists 0 > 0, when |u| < d, we have h(t,u) > u—elu|. Take 0 < r < 1 sufficiently small
such that ||u]lec < min{oy,d} for any u € Ki(r). Then, taking 0 < & < 1 we have

u(t)

T T
O/G(t,u(t))dtzo/b/g ) dsdt

for any u € Ky (r).
Set

l\:)\r—\

T
/1—5|u )|?dt >0,
0

T
= f G(t ) dt d = f I; ds.
uElir{lk(r)/ and. vk = uEIIr{lk(r)Z/ i(s) ds
0 0

Let A\, = max {0 (—rp + )2 ,)2 2P — Vk)}, then for all A such that A > A\
and every u € Ky(r), We have

a - b o -
pa(u) < —r? + TP — v — Ak
() p- 2(p~)?
< Ol Ol — vk — A <0,
p~ 2(p7)? -

Theorem 1.10 guarantees that @9 has at least k pairs of different critical points. That
is, Problem (2.17) has at least k distinct pairs of nontrivial solutions. Therefore we

have the same result for Problem (1.1). O
Theorem 2.8. Assume that (h11) and (hi2) hold, and
(h1s) [y Li(s)ds <0 foranyueR (j=1,....1).

Then for any k € N, there exists a A\, such that for any A > A\, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. The argument is similar to that in Theorem 2.7. O
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