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1. INTRODUCTION

We study the multiplicity of nontrivial solutions for the problem
−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
)(
|u′(t)|p(t)−2 · u′(t)

)′
= λh(t, u(t)), t 6= tj , t ∈ [0, T ],

−∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , l,
u(0) = u(T ) = 0,

(1.1)

where 0 = t0 < t1 < . . . < tl < tl+1 = T , λ > 0 is a numerical parameter, h is
a Carathéodory function, Ij ∈ C(R,R), j = 1, 2, . . . , l, ∆u′(tj) = u′(t+j ) − u′(t−j ),
u′(t+j ) and u′(t−j ) denote the right and left derivative of u at t = tj , j = 1, 2, . . . , l.
Here p is a function in C([0, T ],R) with

1 < p− = inf
t∈[0,T ]

p(t) ≤ p+ = sup
t∈[0,T ]

p(t),

and a, b are positive constants.
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Impulsive problems for the p(t)-Laplacian were introduced in [12] and [13]. In [4]
the authors considered

u′′(t) + λh(t, u(t)) = 0, t 6= tj , t ∈ [0, T ],
−∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , l,
u(0) = u(T ) = 0,

and the goal in this paper is to generalize the results so that (1.1) can be considered.
The variable exponent Lebesgue space Lp(t)(0, T ) is defined by

Lp(t)(0, T ) =
{
u : (0, T )→ R is mesurable,

T∫
0

|u(t)|p(t) dt < +∞
}

endowed with the norm

|u|p(t) = inf
{
λ > 0 :

T∫
0

∣∣∣u(t)
λ

∣∣∣p(t)
dt ≤ 1

}
.

The variable exponent Sobolev space W 1,p(t)(0, T ) is defined by

W 1,p(t)(0, T ) = {u ∈ Lp(t)(0, T ) : u′ ∈ Lp(t)(0, T )}

endowed with the norm ‖u‖1,p(t) = |u|p(t) + |u′|p(t).
Denote by C([0, T ]) the space of continuous functions on [0, T ] endowed with

the norm |u|∞ = supt∈[0,T ] |u(t)|. Now W
1,p(t)
0 (0, T ) denotes the closure of C∞0 (0, T )

in W 1,p(t)(0, T ).

Proposition 1.1 ([11]). Lp(t)(0, T ), W 1,p(t)(0, T ) and W
1,p(t)
0 (0, T ) are separable,

reflexive and uniformly convex Banach spaces.

Proposition 1.2 ([11]). For any u ∈ Lp(t)(0, T ) and v ∈ Lq(t)(0, T ), where
1
p(t) + 1

q(t) = 1, we have

∣∣∣ T∫
0

uv dt
∣∣∣ ≤ ( 1

p−
+ 1
q−

)
|u|p(t)|v|q(t).

Proposition 1.3 ([11]). Let ρ(u) =
∫ T

0 |u(t)|p(t) dt. For any u ∈ Lp(t)(0, T ), the
following assertions hold.

1. For u 6= 0, |u|p(t) = λ⇔ ρ
(
u
λ

)
= 1.

2. |u|p(t) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1).
3. If |u|p(t) > 1, then |u|p

−

p(t) ≤ ρ(u) ≤ |u|p
+

p(t).

4. If |u|p(t) < 1, then |u|p+
p(t) ≤ ρ(u) ≤ |u|p

−

p(t).
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Proposition 1.4 ([11]). If u, uk ∈ Lp(t)(0, T ), k = 1, 2, . . ., then the following state-
ments are equivalent:

1. lim
k→+∞

|uk − u|p(t) = 0 (i.e. uk → u in Lp(t)(0, T )),
2. lim

k→+∞
ρ(uk − u) = 0,

3. uk → u in measure in (0, T ) and lim
k→+∞

ρ(uk) = ρ(u).

Proposition 1.5 ([9]). The Poincaré-type inequality holds, that is, there exists a
positive constant c such that

|u|p(t) ≤ c|u′|p(t), for all u ∈W 1,p(t)
0 (0, T ).

Thus |u′|p(t) is an equivalent norm in W
1,p(t)
0 (0, T ). We will use this equivalent

norm in the following discussion and write ‖u‖ = |u′|p(t) for simplicity.
We now recall the Krasnoselskii genus and information on this may be found

in [1,2,14,15]. Let E be a real Banach space. Let us denote by Σ the class of all closed
subsets A ⊂ E\{0} that are symmetric with respect to the origin, that is, u ∈ A
implies −u ∈ A.

Definition 1.6. Let A ∈ Σ. The Krasnoselskii genus γ(A) is defined as being the
least positive integer n such that there is an odd mapping ϕ ∈ C(A,Rn \ {0}). If such
n does not exist, we set γ(A) = +∞. Furthermore, by definition, γ(∅) = 0.

Theorem 1.7 ([14]). Let E = RN and ∂Ω be the boundary of an open, symmetric
and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Note γ(SN−1) = N . If E is infinite dimension and separable and S is the unit
sphere in E, then γ(S) = +∞.

Proposition 1.8 ([14]). Let A,B ∈ Σ. Then, if there exists an odd map f ∈ C(A,B),
then γ(A) ≤ γ(B). Consequently, if there exists an odd homeomorphism f : A→ B,
then γ(A) = γ(B).

Definition 1.9. Let J ∈ C1(E,R). If any sequence (un) ⊂ E for which (J(un)) is
bounded and J ′(un)→ 0 when n→ +∞ in E′ possesses a convergent subsequence,
then we say that J satisfies the Palais-Smale condition (the (PS) condition).

We now state a theorem due to Clarke.

Theorem 1.10 ([5,17]). Let J ∈ C1(E,R) be a functional satisfying the Palais-Smale
condition. Also suppose that:

1) J is bounded from below and even,
2) there is a compact set K ∈ Σ such that γ(K) = k and supx∈K J(x) < J(0).

Then J possesses at least k pairs of distinct critical points and their corresponding
critical values are less than J(0).
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Definition 1.11. We say that u ∈W 1,p(t)
0 (0, T ) = X is a weak solution of Problem

(1.1) if and only if

(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2 · u′(t)v′(t) dt = λ

T∫
0

h(t, u(t))v(t) dt

+
l∑

j=1
Ij(u(tj))v(tj)

for all v ∈ X.

In Section 2 we will use the following elementary inequalities (see [16]): for all
x, y ∈ R, we have

(|x|p(·)−2x− |y|p(·)−2y)(x− y) ≥ 1
2p(·) |x− y|

p(·) if p(·) ≥ 2, (1.2)

and

(|x|p(·)−2x− |y|p(·)−2y)(x− y) ≥
(
p(·)− 1

) |x− y|2

(|x|+ |y|)2−p(·) if 1 < p(·) < 2. (1.3)

Remark 1.12. Note (1.2) implies

(|x|p(·)−2x− |y|p(·)−2y)(x− y) ≥ 1
2p+ |x− y|p(·) if p(·) ≥ 2. (1.4)

Also (1.3) implies[
(|x|p(·)−2x− |y|p(·)−2y)(x− y)

] p(·)
2 ≥ p− − 1√

2
|x− y|p(·)

(|x|p(·) + |y|p(·))
2−p(·)

2

(1.5)

if 1 < p(·) < 2. To see this note for any x, y ∈ R and 1 < p(·) < 2, from (1.3) we have[
(|x|p(·)−2x− |y|p(·)−2y)(x− y)

] p(·)
2 ≥ (p− − 1) |x− y|p(·)

(|x|+ |y|)p(·) 2−p(·)
2

and now using

(|x|+ |y|)p(·) ≤ 2p(·)−1(|x|p(·) + |y|p(·)) ≤ 2(|x|p(·) + |y|p(·)),

we obtain[
(|x|p(·)−2x− |y|p(·)−2y)(x− y)

] p(·)
2 ≥ (p− − 1) 1

2
2−p(·)

2

|x− y|p(·)(
|x|p(·) + |y|p(·)

) 2−p(·)
2

≥ p− − 1√
2

|x− y|p(·)(
|x|p(·) + |y|p(·)

) 2−p(·)
2

.
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2. MAIN RESULTS

Theorem 2.1. Assume the following are satisfied.

(h1) There exist α, β ∈ L1(0, T ) and a continuous function γ : [0, T ]→ R such that
0 ≤ γ+ = supt∈[0,T ] γ(t) < 2p− − 1 with

|h(t, u)| ≤ α(t) + β(t)|u|γ(t) for any (t, u) ∈ [0, T ]× R.

(h2) h(t, u) is odd with respect to u and H(t, u) =
∫ u

0 h(t, ξ) dξ > 0 for every (t, u) ∈
[0, T ]× R \ {0}.

(h3) Ij(u) (j = 1, 2, . . . , l) are odd and
∫ u

0 Ij(s) ds ≤ 0 for any u ∈ R (j = 1, . . . , l).

Then for any k ∈ N, there exists a λk such that when λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. The corresponding functional to Problem (1.1) is defined as follows:

ϕ(u) = a

T∫
0

1
p(t) |u

′(t)|p(t) dt+ b

2

( T∫
0

1
p(t) |u

′(t)|p(t) dt
)2

−
l∑

j=1

u(tj)∫
0

Ij(s) ds− λ
T∫

0

H(t, u(t)) dt.

(2.1)

From (h1) and the fact that Ij ∈ C(R,R) it is easy to see that ϕ ∈ C1(X,R) and
for all u, v ∈ X

ϕ′(u) · v =
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2u′(t)v′(t) dt

−
l∑

j=1
Ij(u(tj))v(tj)− λ

T∫
0

h(t, u(t))v(t) dt.

(2.2)

Thus the critical points of ϕ are the weak solutions of (1.1).
First we show that ϕ is bounded from below. From the continuous embedding of

X in C([0, T ]), for any u ∈ X with ‖u‖ > 1, we have that

T∫
0

|u(t)|γ(t)+1 dt ≤
T∫

0

|u|γ(t)+1
∞ dt ≤ cT‖u‖γ

++1, (2.3)
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where c = maxt∈[0,T ] c
γ(t)+1
0 and c0 is the best constant of the continuous embedding.

It follows from conditions (h1), (h2), (h3) and (2.3) that

ϕ(u) = a

T∫
0

1
p(t) |u

′(t)|p(t) dt+ b

2

( T∫
0

1
p(t) |u

′(t)|p(t) dt
)2

−
l∑

j=1

u(tj)∫
0

Ij(s) ds− λ
T∫

0

H(t, u(t)) dt

≥ a

p+

T∫
0

|u′(t)|p(t) dt+ b

2(p+)2

( T∫
0

|u′(t)|p(t) dt
)2

− λ
T∫

0

α(t)|u(t)|+ β(t)|u(t)|γ(t)+1 dt

≥ a

p+ ‖u‖
p−

+ b

2(p+)2 ‖u‖
2p−
− λ|α|L1c0‖u‖ − λ|β|L1c‖u‖γ

++1,

(2.4)

for any u ∈ X with ‖u‖ ≥ 1. Since γ+ < 2p− − 1 , then lim‖u‖→+∞ ϕ(u) = +∞ and
consequently, ϕ is bounded from below.

Next, we show that the functional ϕ satisfies the (PS) condition. Now for any
u ∈ X with ‖u‖ ≤ 1, it is easy to see that

ϕ(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
− λ|α|L1c0‖u‖ − λ|β|L1c‖u‖γ

−+1. (2.5)

Let (un) ⊂ X be a Palais-Smale sequence for ϕ, i.e. (ϕ(un)) is a bounded sequence
and limn→+∞ ϕ′(un) = 0. Thus there exists a positive constant B such that

ϕ(un) ≤ B. (2.6)

From (2.4), (2.5), (2.6) and since γ+ < 2p− − 1, in all cases we deduce that the
sequence (un) is bounded in X. Thus, passing to a subsequence if necessary, there
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exists u ∈ X such that un ⇀ u weakly in X. Moreover, by (2.1) and (2.2), we have

(
ϕ′(un)− ϕ′(u)

)
·
(
un − u

)
=
(
a+ b

T∫
0

1
p(t) |u

′
n(t)|p(t) dt

) T∫
0

|u′n(t)|p(t)−2u′n(t)(u′n(t)− u′(t)) dt

−
l∑

j=1
Ij(un(tj))(un(tj)− u(tj))− λ

T∫
0

h(t, un(t))(un(t)− u(t)) dt

−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2u′(t)(u′n(t)− u′(t)) dt

+
l∑

j=1
Ij(u(tj))(un(tj)− u(tj)) + λ

T∫
0

h(t, u(t))(un(t)− u(t)) dt

=
(
a+ b

T∫
0

1
p(t) |u

′
n(t)|p(t) dt

) T∫
0

|u′n(t)|p(t)−2u′n(t)(u′n(t)− u′(t)) dt

−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2u′(t)(u′n(t)− u′(t)) dt

−
l∑

j=1
(Ij(un(tj)− Ij(u(tj))(un(tj)− u(tj))

− λ
T∫

0

(h(t, un(t))− h(t, u(t)))(un(t)− u(t)) dt.

Since the embedding of X in C([0, T ]) is compact, then (un) uniformly converges to u
in C([0, T ]), by using (h1) and the Lebesgue Dominated Convergence Theorem, we
have that


λ

T∫
0

(
h(t, un(t))− h(t, u(t))

)(
un(t)− u(t)

)
dt→ 0,

l∑
j=1

(
Ij(un(tj)− Ij(u(tj)

)(
un(tj)− u(tj)

)
→ 0, as n→∞.

(2.7)

Since ϕ′(un) → 0 and un ⇀ u in X, then we have
(
ϕ′(un) − ϕ′(u)

)
·
(
un − u

)
→ 0

as n→∞.
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Consequently, from (2.7) we have Sn → 0 as n→∞, where

Sn =
(
a+ b

T∫
0

1
p(t) |u

′
n(t)|p(t) dt

) T∫
0

|u′n(t)|p(t)−2u′n(t)(u′n(t)− u′(t)) dt

−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2u′(t)(u′n(t)− u′(t)) dt.

We can rewrite Sn as

Sn =
(
a+ b

T∫
0

1
p(t) |u

′
n(t)|p(t) dt

)

×
T∫

0

(
|u′n(t)|p(t)−2u′n(t)− |u′(t)|p(t)−2u′(t)

)
(u′n(t)− u′(t)) dt

+
(
a+ b

T∫
0

1
p(t) |u

′
n(t)|p(t) dt

) T∫
0

|u′(t)|p(t)−2u′(t)(u′n(t)− u′(t)) dt

−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2u′(t)(u′n(t)− u′(t)) dt.

From the weak convergence of (un) in X, and since |u′|p(t)−2u′ ∈ X ′ = W
1,q(t)
0 (0, T )

with q(t) = p(t)
p(t)−1 , we deduce that

T∫
0

|u′(t)|p(t)−2u′(t)(u′n(t)− u′(t)) dt→ 0 as n→∞. (2.8)

Hence, from (2.8) and since Sn → 0, we get

(
a+b

T∫
0

1
p(t) |u

′
n(t)|p(t) dt

) T∫
0

(
|u′n(t)|p(t)−2u′n(t)−|u′(t)|p(t)−2u′(t)

)
(u′n(t)−u′(t)) dt→ 0

as n→∞. Since a, b > 0, then we have
T∫

0

(
|u′n(t)|p(t)−2u′n(t)− |u′(t)|p(t)−2u′(t)

)
(u′n(t)− u′(t)) dt→ 0 as n→∞. (2.9)

To complete the proof of the Palais-Smale condition we follow the argument in the proof
of Theorem 3.1 in [3]. We divide I = (0, T ) into two parts

I1 = {t ∈ (0, T ) : 1 < p(t) < 2}, I2 = {t ∈ (0, T ) : p(t) ≥ 2}.

We will let | · |p(t),Ii
, i = 1, 2, to denote the norm in Lp(t)(Ii).
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On I1, from Holder’s inequality (See Proposition 1.2) and using the inequality (1.5)
we get ∫

I1

|u′n(t)− u′(t)|p(t) dt

≤
√

2
p− − 1

∫
I1

((
|u′n(t)|p(t)−2u′n(t)− |u′(t)|p(t)−2u′(t)

)
(u′n(t)− u′(t))

) p(t)
2

×
(
|u′n(t)|p(t) + |u′(t)|p(t)

) 2−p(t)
2

dt

≤ c
∣∣∣((|u′n(t)|p(t)−2u′n(t)− |u′(t)|p(t)−2u′(t)

)
(u′n(t)− u′(t))

) p(t)
2
∣∣∣

2
p(t) ,I1

×
∣∣∣(|u′n(t)|p(t) + |u′(t)|p(t)

) 2−p(t)
2
∣∣∣

2
2−p(t) ,I1

,

where c =
√

2(2+p+−p−)
2(p−−1) . From (2.9) we get∣∣∣((|u′n(t)|p(t)−2u′n(t)− |u′(t)|p(t)−2u′(t)

)
(u′n(t)− u′(t))

) p(t)
2
∣∣∣

2
p(t) ,I1

→ 0 as n→∞.

Now using
∫
I1

(
|u′n(t)|p(t) + |u′(t)|p(t)) dt is bounded we get∫

I1

|u′n(t)− u′(t)|p(t) dt→ 0 as n→∞. (2.10)

On I2, from the inequality (1.4) we have∫
I2

|u′n(t)−u′(t)|p(t) dt ≤ 2p
+
∫
I2

(
|u′n(t)|p(t)−2u′n(t)−|u′(t)|p(t)−2u′(t)

)
(u′n(t)−u′(t)) dt,

so ∫
I2

|u′n(t)− u′(t)|p(t) dt→ 0 as n→∞. (2.11)

From (2.10) and (2.11) and by Proposition 1.4, we conclude that ‖un − u‖ → 0 as
n→∞, so ϕ satisfies the Palais-Smale condition.

Notice that W 1,p+

0 (0, T ) ⊂ W
1,p(t)
0 (0, T ). Consider {e1, e2, . . .}, a Schauder basis

of the space W 1,p+

0 (0, T ) (see [18]), and for each k ∈ N, consider Xk, the subspace of
W 1,p+

0 (0, T ) generated by the k vectors {e1, e2, . . . , ek}. Clearly Xk is a subspace
of W 1,p(t)

0 (0, T ).
For r > 0, consider

Kk(r) =
{
u ∈ Xk : ‖u‖2 =

k∑
i=1

ξ2
i = r2

}
.
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For any r > 0. We consider the odd homeomorphism χ : Kk(r) → Sk−1 defined
by χ(u) = (ξ1, ξ2, . . . , ξk), where Sk−1 is the sphere in Rk. From Theorem 1.7 and
Proposition 1.8, we conclude that γ(Kk(r)) = k. Let 0 < r < 1

c0
where c0 is the best

constant of the embedding of X in C([0, T ]), so ‖u‖∞ ≤ c0‖u‖ < 1. It follows from
hypothesis (h2) that

∫ T
0 H(t, u(t)) dt > 0 for any u ∈ Kk(r). Then

µk = inf
u∈Kk(r)

T∫
0

H(t, u(t)) dt

is strictly positive (note the compactness of Kk(r)). If we set

νk = inf
u∈Kk(r)

l∑
j=1

u(tj)∫
0

Ij(s) ds,

we see that νk ≤ 0. Let

λk = 1
µk

(
a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk

)
,

and note λk > 0. Then when λ > λk, we take 0 < r ≤ 1, and then for any u ∈ Kk(r)
we have ‖u‖ ≤ 1 and

ϕ(u) ≤ a

p−

T∫
0

|u′(t)|p(t) dt+ b

2(p−)2

( T∫
0

|u′(t)|p(t) dt
)2
− νk − λµk

≤ a

p−
‖u‖p

−
+ b

2(p−)2 ‖u‖
2p−
− νk − λµk

<
a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk − λkµk = 0.

Theorem 1.10 guarantees that the functional ϕ has at least k pairs of different critical
points. Hence, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Corollary 2.2. Assume that (h2) and (h3) hold, and

(h4) h(t, u) is bounded.

Then for any k ∈ N, there exists a λk such that for any λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Theorem 2.3. Assume that (h1) holds, and assume the following are satisfied.

(h5) There exist αj , βj > 0 and γj with 0 < γj < 2p− − 1 (j = 1, 2, . . . , l) such that

|Ij(u)| ≤ αj + βj |u|γj for any u ∈ R (j = 1, . . . , l).
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(h6) h(t, u) and Ij(u) (j = 1, 2, . . . , l) are odd with respect to u and H(t, u) > 0 for
every (t, u) ∈ [0, T ]× R \ {0}.

Then for any k ∈ N, there exists a λk such that for any λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.
Proof. From assumptions (h1) and (h6), we see that ϕ ∈ C1(X,R) is an even
functional and ϕ(0) = 0. We now show that ϕ is bounded from below. Let
α0 = max{α1, α2, . . . , αl}, β0 = max{β1, β2, . . . , βl}. We have for any u ∈ X with
‖u‖ > 1 that

ϕ(u) = a

T∫
0

1
p(t) |u

′(t)|p(t) dt+ b

2

( T∫
0

1
p(t) |u

′(t)|p(t) dt
)2

− λ
T∫

0

H(t, u(t)) dt−
l∑

j=1

u(tj)∫
0

Ij(s) ds

≥ a

p+ ‖u‖
p−

+ b

2(p+)2 ‖u‖
2p−
−

T∫
0

(α(t)|u(t)|+ β(t)|u(t)|)γ(t)+1

−
l∑

j=1
(αj |u(tj)|+ βj |u(tj)|γj+1)

≥ a

p+ ‖u‖
p−

+ b

2(p+)2 ‖u‖
2p−
− |α|L1c0‖u‖ − |β|L1c‖u‖γ

++1

− α0lc0‖u‖ − β0c
′
l∑

j=1
‖u‖γj+1.

(2.12)

Now, we show that ϕ satisfies the Palais-Smale condition. For any u ∈ X with ‖u‖ ≤ 1,
we have

ϕ(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
− |α|L1c0‖u‖ − |β|L1c‖u‖γ

−+1

− α0lc‖u‖ − β0c
′
l∑

j=1
‖u‖γj+1.

(2.13)

Let (un) ⊂ X be a sequence such that (ϕ(un)) is a bounded sequence and ϕ′(un)→ 0
in X ′. From (2.12), (2.13), and since γ+, γj < 2p− − 1, in all cases we deduce that
(un) is bounded in X. The rest of the proof of the Palais-Smale condition is similar to
that in Theorem 2.1.

Consider Kk(r) as in Theorem 2.1. For any r > 0, there exits an odd homeomor-
phism χ : Kk(r)→ Sk−1. From assumption (h6) we have

µk = inf
u∈Kk(r)

T∫
0

H(t, u(t)) dt > 0.
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Let

νk = inf
u∈Kk(r)

l∑
j=1

u(tj)∫
0

Ij(s) ds and λk = max
{

0, 1
µk

( a

p−
rp

−
+ b

2(p−)2 r
2p−
−νk

)}
.

Then when λ > λk, we take 0 < r ≤ 1, and then for any u ∈ Kk(r) we have ‖u‖ ≤ 1
and

ϕ(u) ≤ a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk − λµk

<
a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk − λkµk ≤ 0.

From Theorem 1.10, ϕ has at least k pairs of different critical points. Consequently,
Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Corollary 2.4. Assume that the assumptions (h4), (h6) hold, and

(h7) Ij(u) (j = 1, 2, . . . , l) are bounded.

Then for any k ∈ N, there exists a λk such that for any λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Theorem 2.5. Assume that (h3) holds, and

(h8) There exists a constant σ > 0 such that h(t, σ) = 0, h(t, u) > 0 for every
u ∈ (0, σ),

(h9) h(t, u) is odd with respect to u.

Then for any k ∈ N, there exists a λk such that when λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. Define the bounded function

f(t, u) =
{

0, if |u| > σ,
h(t, u), if |u| ≤ σ.

Consider
−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
)(
|u′(t)|p(t)−2 · u′(t)

)′
= λf(t, u(t)), t 6= tj , t ∈ [0, T ],

−∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , l,
u(0) = u(T ) = 0,

(2.14)

and we now show that solutions of Problem (2.14) are also solutions of Problem (1.1).
Let u0 be a solution of Problem (2.14). We now prove that −σ ≤ u0(t) ≤ σ. Suppose
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that max0≤t≤T u0(t) > σ, then there exists an interval [d1, d2] ⊂ [0, T ] such that
u0(d1) = u0(d2) = σ and for any t ∈ (d1, d2) we have u0(t) > σ, and so

−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
)(
|u′(t)|p(t)−2 · u′(t)

)′
= λf(t, u(t)) = 0, t ∈ (d1, d2).

We deduce that there is a constant c such that |u′0(t)|p(t)−2 ·u′0(t) = c for any t ∈ [d1, d2],
and since u′0(d1) ≥ 0 and u′0(d2) ≤ 0, then we have

|u′0(d1)|p(d1)−2 · u′0(d1) = c ≥ 0,
|u′0(d2)|p(d2)−2 · u′0(d2) = c ≤ 0,

so, u′0(t) = 0 for any t ∈ [d1, d2], i.e. u0(t) = σ for any t ∈ [d1, d2], which is a contra-
diction. From a similar argument we see that min0≤t≤T u0(t) ≥ −σ.

The functional ϕ1 : X → R defined by

ϕ1(u) = a

T∫
0

1
p(t) |u

′(t)|p(t) dt+ b

2

( T∫
0

1
p(t) |u

′(t)|p(t) dt
)2

−
l∑

j=1

u(tj)∫
0

Ij(s) ds− λ
T∫

0

F (t, u(t)) dt

(2.15)

is continuously Fréchet differentiable at any u ∈ X, where F (t, u) =
∫ u

0 f(t, s) ds.
We have

ϕ′1(u) · v =
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′|p(t)−2u′(t)v′(t) dt

−
l∑

j=1
Ij(u(tj))v(tj)− λ

T∫
0

f(t, u(t))v(t) dt

(2.16)

for all v ∈ X. It is clear that ϕ1 is an even functional, ϕ1(0) = 0 and bounded from
below. To see this note for u ∈ X with ‖u‖ ≥ 1 we have

ϕ1(u) ≥ a

p+

T∫
0

|u′(t)|p(t) dt+ b

2(p+)2

( T∫
0

|u′(t)|p(t) dt
)2
− λ

T∫
0

u(t)∫
0

f(t, s) dsdt

≥ a

p+

T∫
0

|u′(t)|p(t) dt+ b

2(p+)2

( T∫
0

|u′(t)|p(t) dt
)2
− λ

T∫
0

σ∫
0

f(t, s) dsdt

︸ ︷︷ ︸
=τ>0

≥ a

p+ ‖u‖
p−

+ b

2(p+)2 ‖u‖
2p−
− λτ,
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so it follows that ϕ1 is bounded from below. Let (un) be a Palais-Smale sequence. It
is easy to see that (un) is bounded in X and the rest of the proof of the Palais-Smale
condition is similar to that in the proof in Theorem 2.1.

Consider Kk(r) = {u ∈ Xk : ‖u‖ = r}. For any r > 0 the odd homeomorphism
χ : Kk(r) → Sk−1 gives γ(Kk(r)) = k. Let 0 < r < min{1, σc0

}, where c0 is the
best constant of the embedding of X in C([0, T ]), so ‖u‖∞ ≤ c0‖u‖ < σ for any
u ∈ Kk(r). Using assumptions (h8) and (h9), we have F (t, u(t)) > 0 as u(t) 6= 0. Then∫ T

0 F (t, u(t)) dt > 0 for any u ∈ Kk(r). If we set

µk = inf
u∈Kk(r)

T∫
0

F (t, u(t)) dt and νk = inf
u∈Kk(r)

l∑
j=1

u(tj)∫
0

Ij(s) ds,

then µk > 0 and νk ≤ 0. Let

λk = 1
µk

(
a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk

)
,

so λk > 0, and for any λ > λk and any u ∈ Kk(r) with ‖u‖ < 1 we have

ϕ(u) ≤ a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk − λµk

<
a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk − λkµk = 0.

From Theorem 1.10, ϕ1 has at least k pairs of different critical points. Then, Problem
(2.14) has at least k distinct pairs of nontrivial solutions. Consequently, Problem (1.1)
has at least k distinct pairs of nontrivial solutions.

A similar argument to that in Theorem 2.5, yields the following result.

Theorem 2.6. Let conditions (h5), (h8) hold and

(h10) h(t, u) and Ij(u) (j = 1, 2, . . . , l) are odd with respect to u.

Then for any k ∈ N, there exists a λk such that for any λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Theorem 2.7. Suppose that (h5) holds, and

(h11) There exist a constant σ1 > 0 such that h(t, σ1) ≤ 0,
(h12) h(t, u) and Ij(u) (j = 1, 2, . . . , l) are odd with respect to u and limu→0

h(t,u)
u = 1

uniformly for t ∈ [0, T ].

Then for any k ∈ N, there exists a λk such that for any λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.
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Proof. Define the bounded function

g(t, u) =


h(t, σ1), if u > σ1,
h(t, u), if |u| ≤ σ1,
h(t,−σ1), if u < −σ1.

We will verify that the solutions of the problem
−
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
)(
|u′(t)|p(t)−2 · u′(t)

)′ + λg(t, u(t)) = 0, t 6= tj , t ∈ [0, T ],

−∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , l,
u(0) = u(T ) = 0,

(2.17)

are solution of Problem (1.1). Let u0 be a solution of Problem (2.17). We prove
that −σ1 ≤ u0(t) ≤ σ1 for any t ∈ [0, T ]. Suppose that max0≤t≤T u0(t) > σ1, then
there exists an interval [d1, d2] ⊂ [0, T ] such that u0(d1) = u0(d2) = σ1 and for any
t ∈ (d1, d2) we have u0(t) > σ1, and then when t ∈ (d1, d2) we obtain

(
a+ b

T∫
0

1
p(t) |u

′
0(t)|p(t) dt

)(
|u′0(t)|p(t)−2 · u′0(t)

)′
= −λg(t, u0(t)) = −λh(t, σ1) ≥ 0.

Therefore, we deduce that

(
|u′0(t)|p(t)−2 · u′0(t)

)′
≥ 0, t ∈ (d1, d2),

thus t 7→ |u′0(t)|p(t)−2 · u′0(t) is nondecreasing in (d1, d2), so then

0 ≤ |u′0(d1)|p(d1)−2u′0(d1) ≤ |u′0(t)|p(t)−2u′0(t) ≤ |u′0(d2)|p(d2)−2u′0(d2) ≤ 0,

for every t ∈ [d1, d2]. Hence u′0 = 0 on [d1, d2], so, since u0(d1) = u0(d2) = σ1, then
u(t) = σ1 for every t ∈ [d1, d2], which is a contradiction. From a similar argument we
see that min0≤t≤T u0(t) ≥ −σ1, i.e. u0 is a solution of Problem (1.1).

We consider the functional ϕ2 : X → R defined by

ϕ2(u) = a

T∫
0

1
p(t) |u

′(t)|p(t) dt+ b

2

( T∫
0

1
p(t) |u

′(t)|p(t) dt
)2

−
l∑

j=1

u(tj)∫
0

Ij(s) ds− λ
T∫

0

G(t, u(t)) dt,

(2.18)
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where G(t, u) =
u∫
0
g(t, s) ds. Obviously, ϕ2 is continuously Fréchet differentiable at

any u ∈ X and

ϕ′2(u) · v =
(
a+ b

T∫
0

1
p(t) |u

′(t)|p(t) dt
) T∫

0

|u′(t)|p(t)−2u′(t)v′(t) dt

−
l∑

j=1
Ij(u(tj))v(tj)− λ

T∫
0

g(t, u(t))v(t) dt,

(2.19)

for all v ∈ X. It is clear that critical points of ϕ2 are solutions of Problem (2.17). Now
ϕ2 ∈ C1(X,R) is an even functional and ϕ2(0) = 0.

Let α0 = max{α1, α2, . . . , αl}, β0 = max{β1, β2, . . . , βl}, and we see that

T∫
0

G(t, u(t)) dt =
T∫

0

u(t)∫
0

g(t, s) dsdt ≤
T∫

0

σ1∫
0

g(t, s) dsdt = η. (2.20)

Using assumption (h5) and (2.20), we have for any u ∈ X with ‖u‖ > 1 that

ϕ2(u) = a

T∫
0

1
p(t) |u

′(t)|p(t) dt+ b

2

( T∫
0

1
p(t) |u

′(t)|p(t) dt
)2

−
l∑

j=1

u(tj)∫
0

Ij(s) ds− λ
T∫

0

G(t, u(t)) dt

≥ a

p+ ‖u‖
p−

+ b

2(p+)2 ‖u‖
2p−
−

l∑
j=1

(αj |u(tj)|+ βj |u(tj)|γj+1)− λη

≥ a

p+ ‖u‖
p−

+ b

2(p+)2 ‖u‖
2p−
− α0lc0‖u‖ − β0c

′
l∑

j=1
‖u‖γj+1 − λη,

(2.21)

so it follows that ϕ2 is bounded from below.
Now we show that ϕ2 satisfies the Palais-Smale condition. For any u ∈ X with

‖u‖ ≤ 1, we have

ϕ(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
− α0lc0‖u‖

− β0c
′
l∑

j=1
‖u‖γj+1 − λη.

(2.22)

Let (un) ⊂ X be a sequence such that (ϕ(un)) is a bounded sequence and ϕ′(un)→ 0
as n → +∞. From (2.21), (2.22), and since γ, γj < 2p− − 1, in all cases we deduce
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that (un) is bounded in X. The proof of the Palais-Smale condition is now similar to
that in Theorem 2.1.

Consider Kk(r) as in Theorem 2.1. From assumption (h12), for any ε > 0, there
exists δ > 0, when |u| ≤ δ, we have h(t, u) ≥ u− ε|u|. Take 0 < r ≤ 1 sufficiently small
such that ‖u‖∞ < min{σ1, δ} for any u ∈ Kk(r). Then, taking 0 < ε < 1 we have

T∫
0

G(t, u(t)) dt =
T∫

0

u(t)∫
0

g(t, s) dsdt ≥ 1
2

T∫
0

(1− ε)|u(t)|2 dt > 0,

for any u ∈ Kk(r).
Set

µk = inf
u∈Kk(r)

T∫
0

G(t, u(t)) dt and νk = inf
u∈Kk(r)

l∑
j=1

u(tj)∫
0

Ij(s) ds.

Let λk = max
{

0, 1
µk

(
a
p− r

p− + b
2(p−)2 r

2p− − νk
)}

, then for all λ such that λ > λk
and every u ∈ Kk(r), we have

ϕ2(u) ≤ a

p−
rp

−
+ b

2(p−)2 r
2p−
− νk − λµk

<
a

p−
‖u‖p

−
+ b

2(p−)2 ‖u‖
2p−
− νk − λkµk ≤ 0.

Theorem 1.10 guarantees that ϕ2 has at least k pairs of different critical points. That
is, Problem (2.17) has at least k distinct pairs of nontrivial solutions. Therefore we
have the same result for Problem (1.1).

Theorem 2.8. Assume that (h11) and (h12) hold, and

(h13)
∫ u

0 Ij(s) ds ≤ 0 for any u ∈ R (j = 1, . . . , l).

Then for any k ∈ N, there exists a λk such that for any λ > λk, Problem (1.1) has at
least k distinct pairs of nontrivial solutions.

Proof. The argument is similar to that in Theorem 2.7.
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