PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of the strip coal pillar models failure with different roof and floor conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to study the failure mechanism and characteristics for strip coal pillars, a monitoring device for strip coal pillar uniaxial compression testing was developed. Compression tests of simulated strip coal pillars with different roof and floor rock types were conducted. Test results show that, with increasing roof and floor strength, compressive strength and elastic modulus of “roof-strip coal pillar-floor” combined specimens increase gradually. Strip coal pillar sample destruction occurs gradually from edge to the interior. First macroscopic failure occurs at the edge of the middle upper portion of the specimen, and then develops towards the corner. Energy accumulation and release cause discontinuous damage in the heterogeneous coal-mass, and the lateral displacement of strip coal pillar shows step and mutation characters. The brittleness and burst tendency of strip coal pillar under hard surrounding rocks are more obvious, stress growth rate decreases, and the rapid growth acoustic emission (AE) signal period can be regarded as a precursor for instability in the strip coal pillar. The above results have certain theoretical value for understanding the failure law and long-term stability of strip coal pillars.
Rocznik
Strony
475--490
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Hohai University, China
autor
  • Shandong University of Science and Technology, China
autor
  • Shandong University of Science and Technology, China
autor
  • Hohai University, China
Bibliografia
  • [1] M.D.G. Salamon, Stability, instability and design of pillar workings. Int. J. Rock. Mech. Min. 7 (6), 613-631 (1970). DOI: https://doi.org/10.1016/0148-9062(70)90022-7.
  • [2] T.P. Medhurst, E.T. Brown, A study of the mechanical behaviour of coal for pillar design. Int. J. Rock. Mech. Min. 35 (8), 1087-1105 (1998). DOI: https://doi.org/10.1016/S0148-9062(98)00168-5.
  • [3] J.N.V.D. Merwe, Predicting coal pillar life in South Africa. J. S. Afr. I. Min. Metall. 103 (5), 293-301 (2003).
  • [4] A.W. Kahir, S.S. Peng, Causes and mechanisms of massive pillar failure in a southern west virginia coal mine. Int. J. Rock. Mech. Min. 22 (6), 189-189 (1985). DOI: https://doi.org/10.1016/0148-9062(85)90193-7.
  • [5] E. Ghasemi, M. Ataei, K. Shahriar, Prediction of global stability in room and pillar coal mines. Nat. Hazards. 72 (2), 405-422 (2014). DOI: https://doi.org/10.1007/s11069-013-1014-2.
  • [6] V. Kajzar, R. Kukutsch, P. Waclawik, J. Nemcik, Innovative approach to monitoring coal pillar deformation and roof movement using 3d laser technology. Procedia. Eng. 191, 873-879 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.256.
  • [7] W.J. Guo, H.L. Wang, Z.P. Liu, Coal pillar stability and surface movement characteristics of deep wide strip pillar mining. J. Min. Saf. Eng. 32 (3), 369-375 (2015). DOI: https://doi.org/10.13545/j.cnki.jmse.2015.03.004.
  • [8] S.J. Chen, X. Qu, D.W. Yin, X.Q. Liu, H.F. Ma, H.Y. Wang, Investigation lateral deformation and failure characteristics of strip coal pillar in deep mining. Geomech. Eng. 14 (5), 421-428 (2018). DOI: https://doi.org/10.12989/gae.2018.14.5.421.
  • [9] S.J. Chen, D.W. Yin, N. Jiang, F. Wang, Z.H. Zhao, Mechanical properties of oil shale-coal composite samples. Int. J. Rock. Mech. Min. 123, 104-120 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2019.104120.
  • [10] Y. Tan, W.B. Guo, Y.H. Zhao, Engineering stability and instability mechanism of strip Wongawilli coal pillar system based on catastrophic theory. J. China. Coal. Soc. 41 (7), 1667-1674 (2016). DOI: https://doi.org/10.13225/j.cnki.jccs.2015.1593.
  • [11] J.H. Xu, X.X. Miao, X.C. Zhang, Analysis of the time-dependence of the coal pillar stability. J. China. Coal. Soc. 30 (4), 433-437 (2005).
  • [12] T. Sherizadeh, P.S.W. Kulatilake, Assessment of roof stability in a room and pillar coal mine in the u.s. using three-dimensional distinct element method. Tunn. Undergr. Sp. Tech. 59, 24-37 (2016). DOI: https://doi.org/10.1016/j.tust.2016.06.005.
  • [13] G.L. He, D.C. Li, Z.W. Zhai, G.Y. Tang, Analysis of instability of coal pillar and stiff roof system. J. China. Coal. Soc. 32 (9), 897-901 (2007). DOI: https://doi.org/10.1016/S1872-2067(07)60020-5.
  • [14] W. Gao, M.M. Ge, Stability of a coal pillar for strip mining based on an elastic-plastic analysis. Int. J. Rock. Mech. Min. 87, 23-28 (2016). DOI: https://doi.org/10.1016/j.ijrmms.2016.05.009.
  • [15] J.P. Zuo, Y. Chen, F. Cui, Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies. J. China. U. Min. Techno. 47 (1), 81-87 (2018).490.
  • [16] J.P. Zuo, Y. Chen, J.W. Zhang, J.T. Wang, Y.J. Sun, G.H. Jiang, Failure behavior and strength characteristics of coal-rock combined body under different confining pressures. J. China. Coal. Soc. 41 (11), 2706-2713 (2016). DOI: https://doi.org/10.13225/j.cnki.jccs.2016.0456.
  • [17] S.J. Chen, D.W. Yin, B.L. Zhang, H.F. Ma, X.Q. Liu, Mechanical characteristics and progressive failure mechanism of roof-coal pillar structure. Chin. J. Rock. Mech. Eng. 36 (7), 1588-1598 (2017). DOI: https://doi.org/10.13722/j.cnki.jrme.2016.1282.
  • [18] B.N. Hu, Stability analysis of coal pillar in strip mining. J. China. Coal. Soc. 20 (2), 205-210 (1995). DOI: https://doi.org/10.13225/j.cnki.jccs.1995.02.020.
  • [19] A.H. Wilson, An hypothesis concerning pillar stability. Min. Eng. 131 (6), 409-417 (1972).
  • [20] J.K. Xu, R. Zhou, D.Z. Song, N. Li, K. Zhang, D.Y. Xi, Deformation and damage dynamic characteristics of coalrock materials in deep coal mines. Int. J. Damage. Mech. 28 (1), 58-78 (2019). DOI: https://doi.org/10.1177/1056789517741950.
  • [21] H.P. Xie, Y. Ju, L.Y. Li, R.D. Peng, Energy mechanism of deformation and failure of rock masses. Chin. J. Rock. Mech. Eng. 27 (9), 1729-1740 (2008).
  • [22] Z.H. Zhao, H.P. Xie, Energy Transfer and Energy Dissipation in Rock Deformation and Fracture. J. Sichuan. Univ. 40 (2), 26-31 (2008).
  • [23] L.R. Myer, J.M. Kemeny, Z. Zheng, R. Suarez, R.T. Ewy, N.G.W. Cook, Extensile cracking in porous rock under differential compressive stress. Appl. Mech. Rev. 45 (8), 263-280 (1992). DOI: https://doi.org/10.1115/1.3119758.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bebfae3-d633-449b-bb47-fa08b1130e00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.