PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An innovative method of measuring the extension of the piston rod in hydraulic cylinders, especially large ones used in the shipbuilding and offshore industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of selected works related to the wider subject of research conducted at the Faculty of Mechanical Engineering and Shipbuilding at the Gdańsk University of Technology, regarding designing various on board devices with hydraulic drive for ships and other offshore facilities. One of the commonly used these mechanisms are hydraulic actuators with the measurement of the piston rod extension. The issue of precise measurement of the piston rod extension is extremely important in modern technologies of construction, assembly and precise displacement and positioning of large and heavy, both land and ocean engineering objects or structural elements with the use of several large hydraulic cylinders working in parallel. The article presents a one of two new patented P.425099 – A device for measuring the extension of a hydraulic cylinder piston rod. [1].
Rocznik
Tom
Strony
154--159
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Gdansk University of Technology, Institute of Naval Architecture and Ocean Engineering, Gdansk Poland
  • Gdansk University of Technology, Institute of Naval Architecture and Ocean Engineering, Gdansk Poland
  • Poland
Bibliografia
  • 1. P.425099, “A device for measuring the extension of a hydraulic cylinder piston rod “. Patent granted in 2021.
  • 2. “Innovative Ship Relies on Smart Cylinders”, Power&Motion, Feb 1, 2003, https://www.powermotiontech.com/sensors-software/controls-instrumentation/article/21883570/ innovative-ship-relies-on-smart-cylinders
  • 3. P. Boughton, “Measuring the displacement of hydraulic cylinders”, Design Engineer – Instrumentation, 5th February 2013
  • 4. https://www.cpi-nj.com/ hydraulic-cylinder-position-sensors/
  • 5. https://www.cpi-nj.com/linear-position-sensors/
  • 6. EP1620702B1 patent, “Piston rod position detection system”
  • 7. T. Vanthuyne, “An electrical thrust vector control system for the VEGA launcher”, Proceedings of 13th European space mechanisms and tribology symposium ESMATS’2009, Vienna, 23–25 September 2009 (ESA SP-670, July 2009).
  • 8. Dymarski, C., Dymarski, P., & Żywicki, J. (2017). Technology Concept of TLP Platform Towing and Installation in Waters with Depth of 60 m. Polish Maritime Research, 24(s1), 59-66. https://doi.org/10.1515/pomr-2017-0022
  • 9. Dymarski, P., Dymarski, C., & Ciba, E. (2019). Stability Analysis of the Floating Offshore Wind Turbine Support Structure of Cell Spar Type During its Installation. Polish Maritime Research, 26, 109-116. https://doi.org/10.2478/ pomr-2019-0072
  • 10. Ciba, E. (2021). Heave Motion Of A Vertical Cylinder With Heave Plates. Polish Maritime Research, 28, 42-47. https:// doi.org/10.2478/pomr-2021-0004
  • 11. Ciba, E., Dymarski, P., & Grygorowicz, M. (2022). Heave Plates with Holes for Floating Offshore Wind Turbines. Polish Maritime Research, 29, 26-33. https:// doi.org/10.2478/pomr-2022-0003
  • 12. Matuszewski, L. (2019). New Designs of Centrifugal Magnetic Fluid Seals for Rotating Shafts in Marine Technology. Polish Maritime Research, 26(2). https://doi. org/10.2478/pomr-2019-0023
  • 13. Sliwiński, P. (2020). The Influence of Water and Mineral Oil on Mechanical Losses in a Hydraulic Motor for Offshore and Marine Applications. Polish Maritime Research, 27(2). https://doi.org/10.2478/pomr-2020-0034.
  • 14. E. Hristoforoua, A. Ktenab, „Magnetostriction and magnetostrictive materials for sensing applications”, Journal of Magnetism and Magnetic Materials 316 (2007) 372–378
  • 15. “Linear displacement transducer isn’t limited by stroke”. Power&Motion, March 6, 2013, https:// www.powermotiontech.com/sensors-software/ controls-instrumentation/article/21883571/ linear-displacement-transducer-isnt-limited-by-stroke
  • 16. B. Zhang, B. Wang, Y. Li,W. Huang, Y. Li, “Magnetostrictive Tactile Sensor Array for Object Recognition”, IEEE Transactions on Magnetics, vol. 55, no. 7, July 2019
  • 17. J.J. Beato-López, I. Royo-Silvestre, C. Gómez-Polo, “Micrometric non-contact position magnetoimpedance sensor”, Journal of Magnetism and Magnetic Materials 465 (2018) 489–494
  • 18. Y.W. Park, H.W. Song, E.J. Yoo and J.W. Kim, “Concept and Numerical Verification of Magnetostrictive Control Rod Position Identification,” The Korean Society of Mechanical Engineers Autumn Conference, pp. 3672-3673, 2013.
  • 19. E.J. Yoo, Y.W. Park, and M.D. Noh, “Characterization of Detection Signal for Sensing Coil Type in Magnetostrictive Control Rod Position Indicator,” Proc. of KSPE Spring Conference, pp. 219-219, 2016.
  • 20. A. Dorneich, M. Fritton, “Microwave Position Sensor for Hydraulic Drives”, 30th Eurosensors Conference, EUROSENSORS 2016, Procedia Engineering 168 (2016), pp. 1257–1260
  • 21. A.S. Rana, R.S. Sayles, “An experimental study on the friction behaviour of aircraft hydraulic actuator elastomeric reciprocating seal”, Tribol. Interface Eng. Ser. 2005;48:507– 515. doi: 10.1016/S0167-8922(05)80052-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2be793eb-e8b6-42d2-aadc-94f77c5ee05b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.