PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Protocol to define material behaviour and failure strain level at low and high strain rates based on a compression test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compression test is frequently used to define material behaviour. However, this test may be depending on different effects, for example friction, specimen inertia or local stress triaxiality. For this reason, a new design is proposed to analyse the previous effects and to try to minimize it on quantities measured as macroscopic stress and strain. To have a complete understanding, numerical simulations have been performed using finite element method (Abaqus/Standard and Abaqus/Explicit). It allows one to define the macroscopic behaviour and to have an access to the local values not accessible during experiments for a better understanding of the experimental measurements.
Rocznik
Strony
471--481
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
autor
  • Laboratory of Microstructure Studies and Mechanics of Materials, UMR-CNRS 7239, Lorraine University, Metz Cedex, France
autor
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
  • Universiapolis, Ecole Polytechnique d’Agadir Bab Al Madina, Agadir, Morocco
Bibliografia
  • 1. Bao Y., Wierzbicki T., 2004, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, 46, 81-98
  • 2. Baranowski P., Janiszewski J., Małachowski J., 2014, Study on computational methods applied to modelling of pulse shaper in split-Hopkinson bar, Archives of Mechanics, 66, 6, 429-452
  • 3. Beusink M., 2011, Measurements and simulations on the (dynamic) properties of aluminium alloy AA6060, raport of: Faculty of Mechanical Engineering, Eindhoven University of Technology, SIMLab, Department of Structural Engineering, Norwegian University of Science and Technology, Eindhoven
  • 4. Davies E.D.H., Hunter S.C., 1963, The dynamic compression testing of solids by the method of the split Hopkinson pressure bar, Journal of the Mechanics and Physics of Solids, 11, 155-179
  • 5. Dunand M., Mohr D., 2010, Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals, International Journal of Solids and Structures, 47, 9, 1130-1143
  • 6. Dunand M., Mohr D., 2011, On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles, Journal of the Mechanics and Physics of Solids, 59, 7, 1374-1394
  • 7. Field J.E., Proud W.G., Walley S.M., Goldrein H.T., 2001, Review of experimental techniques for high rate deformation and shock studies, [In:] New Experimental Methods in Material Dynamics and Impact, W.K. Nowacki, J.R. Klepaczko (Edit.), Vol. 3: Trends in Mechanics of Materials, 109-177
  • 8. Frąś T., Rusinek A., Pęcherski R.B., Bernier R., Jankowiak T., 2014, Analysis of friction influence on material deformation under biaxial compression state, Tribology International, 80, 14-24
  • 9. Iwamoto T., Yokoyama T., 2012, Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: A computational study, Mechanics of Materials, 51, 97-109
  • 10. Jankowiak T., Rusinek A., Łodygowski T., 2011, Validation of the Klepaczko-Malinowski model for friction correction and recommendations on Split Hopkinson Pressure Bar, Finite Elements in Analysis and Design, 47, 1191-1208
  • 11. Kii N., Iwamoto T., Rusinek A., Jankowiak T., 2014, A study on reduction of friction in impact compressive test based on the Split Hopkinson Pressure Bar method by using a hollow specimen, Applied Mechanics and Materials, 566, 548-553
  • 12. Klepaczko J.R., Malinowski J.Z., 1977, Dynamic frictional effects as measured from the Split Hopkinson Pressure Bar, [In:] High Velocity Deformation of Solids, IUTAM Symposium, Tokyo, Japan, Springer-Verlag, Berlin, 403-416
  • 13. Małachowski J., Baranowski P., Gieleta R., Damaziak K., 2014, Split Hopkinson Pressure Bar impulse experimental measurement with numerical validation, Metrology and Measurement Systems, 21, 1, 47-58
  • 14. Moćko W., Kowalewski Z.L., 2011, Dynamic compression tests – current achievements and future development, Engineering Transactions, 59, 3, 235-248
  • 15. Rittel D., Ravichandran G., Lee S., 2002, Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen, Mechanics of Materials, 34, 627-642
  • 16. Rusinek A., Zaera R., Klepaczko J.R., 2007, Constitutive relations in 3-D for a wide range of strain rates and temperatures – application to mild steels, International Journal of Solids and Structures, 44, 17, 5611-5634
  • 17. Safa K., Gary G., 2010, Displacement correction for punching at a dynamically loaded bar end, International Journal of Impact Engineering, 37, 371-384
  • 18. Wierzbicki T., Bao Y., Lee Y.-W., Bai Y., 2005, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences, 47, 4/5, 719-743
  • 19. Zhong W.Z., Rusinek A., Jankowiak T., Abed F., Bernier R., Sutter G., 2015, Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system, Tribology International, 90, 1-14
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bdf6381-a9ac-4b7c-8c34-144675b9f93b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.