PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the Critical Sizes for Detonation of Cube-shaped Transfer Charges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to obtain the minimum size, thickness and safe separation distance, for the cube-shaped transfer charges used in MEMS (micro-electromechanical system) explosive trains, an explosive train using a JO-9C(III) cube-shaped transfer charge was designed for experimental research. Detonation transfer experiments and detonation interruption experiments were conducted in turn. In initial experiments, the electric detonators were all in the armed position, but different thicknesses of the cube-shaped transfer charges were used. In the later experiments, the thickness of the transfer charges were unchanged, but the separation distances were different. The detonation path of the transfer charge under unsafe conditions was analyzed using the shock wave attenuation law. The results showed that the minimum thickness ranged from 0.2 mm to 0.4 mm, the minimum safe separation distance ranged from 0.4 mm to 0.6 mm; and the cube-shaped transfer charge is detonated by a shock wave from a steel gap rather than air clearance when the safe separation distance is less than the minimum threshold. The thickness design value of the cube-shaped transfer charge (JO-9C(III)) should not be less than 0.6 mm, and the safe separation distance design value of the MEMS explosive train should not be less than 1 mm.
Rocznik
Strony
91--104
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081, Beijing, China
autor
  • Liaoning North Huafeng Special Chemistry Co. Ltd., Beijing, China
  • Liaoning North Huafeng Special Chemistry Co. Ltd., Beijing, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081, Beijing, China
autor
  • Liaoning North Huafeng Special Chemistry Co. Ltd., Beijing, China
Bibliografia
  • [1] Ye, Y.H. Technology of Initiators and Pyrotechnics. (in Chinese) Beijing Institute of Technology Press, Beijing, 2014, pp. 102-106; ISBN 978-7-118-09309-4.
  • [2] Wang, K.M.; Wen, Y.Q. Design of Initiators and Pyrotechnics for Weapon Systems. (in Chinese) National Defense Industry Press, Beijing, 2006, pp. 263-265; ISBN 7-118-04105-X.
  • [3] Schadow, K. MEMS Military Applications – RTO Task Group Summary.AIAA2004-6749, Conference on Micro-Nano-Technologies CANEUS 2004, California, USA 2004.
  • [4] Xu, X.C.; Jiao, Q.J.; Cao, X. Attenuation Regularity of Detonation Wave of Small Charge in PMMA. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2009, 17(4): 431-435.
  • [5] Li, S.C.; Feng, C.G.; Zhao, T.H. The Influence of the Angle of Convex Corner on the Effect of Detonation Waves. Combust. Explos. Shock Waves 1999, 19(4): 289-294.
  • [6] Held, M. Detonation Wave′s Corner Effects. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2000, 8(1): 5-8.
  • [7] Lu, J.P.; Christo, F.C.; Kennedy, D.L. Detonation Modelling of Corner-turning Shocks in PBXN-111. Australasian Fluid Mechanics Conf., 15th, Sydney, AUS 2004.
  • [8] Li, S.B.; Dong, Z.X.; Qi, Y.J.; Jiao, J.F. Numerical Simulation for Spread Decay of Blasting Shock Wave in Different Media. (in Chinese) J. Vib. Shock (Zhendong Yu Chongji) 2009, 28(7): 115-117.
  • [9] Maurer, W. H.; Soto, G.H.; Hollingsworth, D.R. Method for Utilizing a MEMS Safe Arm Device for Microdetonation. Patent US 7007606B1, 2006.
  • [10] Robinson, C.H.; Wood, R.H.; Gelak, M.R.; Hollingsworth, D. Micro-scale Firetrain for Ultra-miniature Electro-mechanical Safety and Arming Device. Patent US 7069861B1, 2006.
  • [11] Li, X.G.; Jiao, Q.J.; Wen, Y.Q. Critical Characteristic of Detonation Propagation of Superfine Desensitized HMX Charge in Channel. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2008, 16(4): 428-431.
  • [12] Hu, F.; Liu, Y.C.; Wang, J.H.; Kai, W.U. Squeeze Charge Process and Booster Performance of HMX/CL-20-based Booster. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2013, 36(4): 87-90.
  • [13] Zhang, S.M. Study on Characteristics of Initiation and Detonation Transfer for Micro-diamater Charge. (in Chinese) Ph.D. thesis, North University of China, 2009.
  • [14] Bao, B.L; Yan, N.; Zhu, F. Research on the Influence of Charge Diameter upon the Output Pressure of Small-sized Explosives. Cent. Eur. J. Energ. Mater. 2015, 12(4): 623-635.
  • [15] Zhao, X.R.; Sun, Y.C.; Yan, L.W.; Hao, Y.P; Jin, S.X. Explosive Transfer Performance Study of a Flat-sheet Style and Micro-scale Explosive Train. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2015, 23(2): 184-188.
  • [16] Xu, X.C.; Jiao, Q.J.; Qin, G.S.; Chu, E.Y.; Wang, K.X; Jin, Z.X. Study on Reaction Zone Length of Small Booster Charges. (in Chinese) Initiators Pyrotech. 2009, (5): 35-38.
  • [17] Wang, K.M. Engineering of Initiators and Pyrotechnics. (in Chinese) National Defense Industry Press, Beijing, 2014, pp. 429; ISBN 978-7-118-09802-0.
  • [18] Zhao, H.X.; Xu, X.C.; Hu, S.Q.; Zhang, S.M.; Jiao, Q.J. Attenuation Model of Shock Wave in Different Materials Gap. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2011, 34(6): 84-87.
  • [19] Wang, E.; Shukla, A. Analytical and Experimental Evaluation of Energies During Shock Wave Loading. Int. J. Impact Eng. 2010, 37(12): 1188-1196.
  • [20] Nurick, G.N.; Mahoi, S.; Langdon, G.S. The Response of Plates Subjected to Loading Arising from the Detonation of Different Shapes of Plastic Explosive. Int. J. Impact Eng. 2016, 89: 102-113.
  • [21] Ayisit, O. The Influence of Asymmetries in Shaped Charge Performance. Int. J. Impact Eng. 2008, 35(12): 1399-1404.
  • [22] Safety and Performance Tests for the Qualification of Explosives (High Explosives, Propellants, and Pyrotechnics). MIL-STD-1715A: Method 1042. Department of Defense Test Method Standard, 2001.
  • [23] Test Method of Safety for Booster Explosive. Part 1: Small Scale Gap Test. GJB 2178.1A-2005, National Military Standard of the People’s Republic of China, 2005.
  • [24] Bourne, N.K.; Cooper, G.A.; Burley, S.J.; Fung, V; Hollands, R. Re-calibration of the UK Large Scale Gap Test. Propellants Explos. Pyrotech. 2005, 30(3): 196-198.
  • [25] Keshavarz, M.H.; Motamedoshariati, H.; Pouretedal, H.R.; Tehrani, M.K.; Semnani, A. Prediction of Shock Sensitivity of Explosives Based on Small-scale Gap Test. J. Hazard. Mater. 2007, 145(1): 109-112.
  • [26] Kim, B; Yoh, J.J.; Lee, J.; Park, J. A Detailed Numerical Calibration of Shock Pressure in the Gap Test Configuration for Characterizing Non-ideal Energetic Materials. AIAA/SAE/ASEE Joint Propulsion Conf., 51st, Orlando, FL 2015.
  • [27] Wang, Z.S.; Liu, Y.C.; Zheng, M.; Zhang, J.L. Study on Attenuating Model of Detonation Shock Wave in the PMMA Gap. (in Chinese) J. Basic Sci. Eng. 2001, 9(4): 316-319.
  • [28] Zhao, H.X.; Xu, X.C.; Hu, S.Q.; Zhang, S.M.; Jiao, Q.J. Attenuation Model of Shock Wave in Different Materials Gap. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2011, 34(6): 84-87.
  • [29] Xu, X.C.; Jiao, Q.J.; Cao, X.; Hu, S.Q.; Zhao, H.X. Attenuation Regularity of Detonation Wave of Small Charge in PMMA. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2009, 17(4): 431-435.
  • [30] LASL Shock Hugoniot Data. (Marsh S.P., Ed.) University of California Press, Berkeley, Los Angeles, London, 1980; ISBN 0-520-04008-2.
  • [31] Li, W.X. One-dimensional Nonsteady Flow and Shock Waves. National Defense Industry Press, Beijing, 2003, pp. 206-212; ISBN 7-118-02869-X.
  • [32] Yang, L.C. Improved Methodology for Estimation of Detonating Properties and Detonability of Energetic Materials. AIAA/SAE/ASEE Joint Propulsion Conf., 53rd, Atlanta, GA 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bdf5bff-3108-4148-bc99-6c9379fdb4b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.