PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ligament-based spine-segment mechanisms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, a growing interest in spine-segment mechanisms for humanoid robots can be observed. The ones currently available are mostly inspired by an intervertebral joint but rarely use its structure and behaviour as input data. The aim of this study was to propose and verify an approach to spine-segment mechanisms synthesis, in which the mechanisms were obtained directly from a ligament system of the intervertebral joint through numerical optimization. The approach consists of two independent optimization procedures performed with genetic algorithm. The first one searches for the optimal structure, while the second estimates its geometrical and stiffness parameters. The mechanisms are rated by their ability to reproduce the static behaviour of the joint in selected aspects. Both procedures use the lumbar L4-L5 intervertebral joint reference data. The approach was tested in two numerical scenarios. It was possible to obtain a mechanism with 7 flexible linear legs that accurately emulated the elastostatic behaviour of the intervertebral joint under moment loads. The results prove that the proposed method is feasible and worth exploring. It may be employed in design of bioinspired joints for use in humanoid robots and can also serve as an initial step in the design of prosthetic and orthotic devices for a human spine.
Rocznik
Strony
705--712
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Institute of Applied Mechanics, Cracow University of Technology, Al. Jana Pawła II, 31-864 Cracow, Poland
autor
  • Institute of Applied Mechanics, Cracow University of Technology, Al. Jana Pawła II, 31-864 Cracow, Poland
Bibliografia
  • [1] J.F. Behrsin and C.A. Briggs, “Ligaments of the lumbar spine: a review.”, Surg. Radiol. Anat. 10 (3), 211–219 (1988).
  • [2] P. Sarathi Banerjee, “Morphological and Kinematic Aspects of Human Spine – As Design Inputs for Developing Spinal Implants”, J. Spine. 2 (4), 2–5 (2013).
  • [3] B. Weisse, et al., “Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model”, J. Mech. Behav. Biomed. Mater. 13, 45–61 (2012).
  • [4] O. Yu, et al., “Development of a New Humanoid Robot WABIAN-2*”, Proc. 2006 IEEE Int. Conf. Robotics and Automation, ICRA 2006, 76–81 (2006).
  • [5] N.G. Tsagarakis, et al., “Lower body design of the “iCub” a human-baby like crawling robot”, Proc. 2006 6th IEEE-RAS Int. Conf. Humanoid Robot. HUMANOIDS, 450–455 (2006).
  • [6] C. Liang and M. Ceccarelli, “Design and simulation of a waisttrunk system for a humanoid robot”, Mech. Mach. Theory 53, 50–65 (2012).
  • [7] D. Stewart, “A platform with six degrees of freedom”, Proc. IMechE. 180(1), 371–385 (1965).
  • [8] R.N.E. Nava, G. Carbone, and M. Ceccarelli, “CaPaMan2bis as trunk module in CALUMA (CAssino low-cost hUMAnoid robot)”, Proc. 2006 IEEE Conf. Robot. Autom. Mechatronics, (2006).
  • [9] A. Ciszkiewicz and G. Milewski, “A novel kinematic model for a functional spinal unit and a lumbar spine”, in Acta Bioeng. Biomech. 18(1), 87–95 (2016).
  • [10] I. Mizuuchi, R. Tajima, T. Yoshikai, and D. Sato, “The Design and Control of the Flexible Spine of a Fully Tendon-Driven Humanoid «Kenta»”, Proc. 2002 IEEE/RSJ Int. Conf. Int. Robots Systems, 2527–2532 (2002).
  • [11] F. Guenter, L. Roos, A. Guignard, and A.G. Billard, “Design of a biomimetic upper body for the humanoid robot Robota”, Proc. 2005 5th IEEE-RAS Int. Conf. Humanoid Robot., 56–61 (2005).
  • [12] B. Gao, et al., “Inverse kinematics and workspace analysis of a cable-driven parallel robot with a spring spine”, Mech. Mach. Theory 76, 56–69 (2014).
  • [13] C. Cibert and V. Hugel, “Compliant intervertebral mechanism for humanoid backbone: Kinematic modeling and optimization”, Mech. Mach. Theory 66, 32–55 (2013).
  • [14] P. Borkowski, et al., “Finite element analysis of an elastomeric artificial disc in lumbar spine”, in Acta Bioeng. Biomech. 14(1), 59–66 (2012).
  • [15] M. Pawlikowski, K. Skalski, and T. Sowiński, “Hyper-elastic modelling of intervertebral disc polyurethane implant”, in Acta Bioeng. Biomech. 15(2), 43–50 (2013).
  • [16] F. García Vacas, F. Ezquerro Juanco, A. Pérez De La Blanca, M. Prado Novoa, and S. Postigo Pozo, “The flexion-extension response of a novel lumbar intervertebral disc prosthesis: A finite element study”, Mech. Mach. Theory 73, 273–281 (2014).
  • [17] M. Christophy, N.A.F. Senan, J.C. Lotz, and O.M. O’Reilly, “A Musculoskeletal model for the lumbar spine”, Biomech. Model. Mechanobiol. 11(1‒2), 19–34 (2012).
  • [18] M. de Zee, L. Hansen, C. Wong, J. Rasmussen, and E.B. Simonsen, “A generic detailed rigid-body lumbar spine model”, J. Biomech. 40(6), 1219–1227 (2007).
  • [19] T.K. Rupp, W. Ehlers, N. Karajan, M. Günther, and S. Schmitt, “A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles.”, Biomech. Model. Mechanobiol. 14(15), 1081–1105 (2015).
  • [20] G. Desroches, C.E. Aubin, D.J. Sucato, and C.H. Rivard, “Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model”, Med. Biol. Eng. Comput. 45(8), 759–768 (2007).
  • [21] M. Christophy, M. Curtin, N.A. Faruk Senan, J.C. Lotz, and O.M. O’Reilly, “On the modeling of the intervertebral joint in multibody models for the spine”, Multibody Syst. Dyn. 30(4), 413–432 (2013).
  • [22] M.R. Gudavalli and J.J. Triano, “An analytical model of lumbar motion segment in flexion”, J. Manipulative Physiol. Ther. 22(4), 201–208 (1999).
  • [23] T.H. Pingel, “Beitrag zur Herleitung und numerischen Realisierungeines mathematischen Modells der menschlichen Wirbelsaüle”, Communications from Institute of Mechanics 77, (1991) [in German].
  • [24] N. Sancisi and V. Parenti-Castelli, “A new approach for the dynamic modelling of the human knee”, PhD thesis, University of Bologna, Bologna, 2008.
  • [25] D.E. Goldberg, Genetic algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, 1989.
  • [26] A. Blanco, M. Delgado, and M.C. Pegalajar, “A real-coded genetic algorithm for training recurrent neural networks.”, Neural Netw. 14(1), 93–105 (2001).
  • [27] M. Maciazek and M. Pasko, “Optimum allocation of active power filters in large supply systems”, Bull. Pol. Ac.: Tech. 64(1), 37–44 (2016).
  • [28] P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “Parallel genetic algorithm based automatic path planning for crane lifting in complex environments”, Autom. Constr. 62, 133–147 (2016).
  • [29] I. Yamamoto, M.M. Panjabi, T. Crisco, and T. Oxland, “Three-dimensional movements of the whole lumbar spine and lumbosacral joint.”, Spine 14(11), 1256–1260 (1989).
  • [30] E.S. Grood and W.J. Suntay, “A joint coordinate system for the clinical description of three-dimensional motions: application to the knee.”, J. Biomech. Eng. 105(2), 136–144 (1983).
  • [31] Y. Wei, Y. Chen, Y. Yang, and Y. Li, “A soft robotic spine with tunable stiffness based on integrated ball joint and particle jamming”, Mechatronics 33, 84‒92 (2016).
  • [32] A.F. Tencer, “Some Static Mechanical Properties of the Lumbar Intervertebral Joint, Intact and Injured”, J. Biomech. Eng. 104(3), 193‒201 (1982).
  • [33] M.M. Panjabi, T.R. Oxland, I. Yamamoto, and J.J. Crisco, “Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves.”, J. Bone Joint Surg. Am. 76(3), 413–424 (1994).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bde2b66-4c98-4f67-9a5e-5a1a256674a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.