PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Hook Handles in a Pulling Task

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To evaluate the effect of handle design characteristics on subjective ratings and pulling forces, meat-hook handles with various handle shapes, sizes, and hook positions were tested in a pulling task. Finger and phalange force data measured by force sensitive resistors and subjective ratings of discomfort were also evaluated. Generally subjects preferred 37-mm double frustum, 30-mm oval handles followed by 30-mm double frustum handles, 37-mm oval, and 45-mm double frustum handles. In the analyses of total pulling force, 37- and 45-mm double frustum handles showed less required pulling force than the others. The averages of finger force contributions to the total pulling force were 27.2, 28.1, 23.9, and 20.8% in order from index to little fingers. The average of phalange force contributions were 28.8, 33.6, and 37.6% for the distal, middle, and proximal phalanges, respectively. The findings illustrate that the pulling finger forces and subjective discomfort ratings were related to the handle shape as well as handle size.
Rocznik
Strony
303--313
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, Pennsylvania State University, University Park, PA, USA
autor
  • The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, Pennsylvania State University, University Park, PA, USA
autor
  • Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
Bibliografia
  • 1. Kadefors R, Areskoug A, Dahlman S, Kilbom Å, Sperling L, Wikström L, et al. An approach to ergonomics evaluation of hand tools. Appl Ergon 1993;24(3):203–11.
  • 2. Tichauer E. Some aspects of stress on forearm and hand in industry. J Occup Med 1966;8(2):63–71.
  • 3. Johnson SL. Ergonomic hand tool design. Hand Clin 1993;9:299–311.
  • 4. Lewis WG, Narayan CV. Design and sizing of ergonomic handles for hand tools. Appl Ergon 1993;24(5):351–6.
  • 5. Freivalds A. Tool evaluation and design, In: Bhattacharya A, McGlothlin, JD, editors. Occupational ergonomics: theory and applications. New York, NY, USA: Marcel Dekker; 1996. p. 303–23.
  • 6. Meagher SW. Tool design for prevention of hand and wrist injuries. J Hand Surg [Am] 1987;12(A):855–7.
  • 7. Blackwell JR, Kornatz KW, Heath EM. Effect of grip span on maximal grip force and fatigue of flexor digitorum superficialis. Appl Ergon 1999;30:401–5.
  • 8. Magill R, Konz S. An evaluation of seven industrial screwdrivers. In: Karwowski W, editor. Trends in Ergonomics/Human Factors III. Amsterdam, The Netherlands: Elsevier; 1986; 597–604.
  • 9. Shih YC, Wang MJ. Hand/tool interface effects on human torque capacity. Int J Ind Ergon 1996;18:205–13.
  • 10. Kee D, Karwowski W. Ranking systems for evaluation of joint and joint motion stressfulness based on perceived discomforts. Appl Ergon 2003;34:167–76.
  • 11. Grant KA, Habes DJ, Steward LL. An analysis of handle designs for reducing manual effort: the influence of grip diameter. Int J Ind Ergon 1992;10:199–206.
  • 12. Yakou T, Yamamoto K, Koyama M, Hyodo K. Sensory evaluation of grip using cylindrical objects. JSME International Journal 1997;Series C40(4):730–5.
  • 13. Cochran DJ, Riley MW. An evaluation of handles shapes and sizes. In: Proceedings of Human Factors Society 26th Annual Meeting. Santa Monica, CA, USA: Human Factors Society 1982. p. 480–512.
  • 14. Freund J, Toivonen R, Takala EP. Grip forces of the fingertips. Clin Biomech 2002;17:515–20.
  • 15. An KN, Cooney WP, Chao EY, Linscheid RL. Functional strength measurement of normal fingers. In: 1978 ASME Advances in Bioengineering. New York, NY, USA: American Society of Mechanical Engineers (ASME); 1978. p. 89–90.
  • 16. Ejeskar A, Ortengren R. Isolated finger flexion force—a methodological study. Hand 1981;13(3):223–30.
  • 17. Amis AA. Variation of finger forces in maximal isometric grasp tests on a range of cylindrical diameters. J Biomed Eng 1987;9:313–20.
  • 18. Lee JW, Rim K. Maximum finger force prediction using a planar simulation of the middle finger. Proceedings Institute Mechanical Engineers 1990;204:167–78.
  • 19. Radhakrishnan S, Nagaravindra MC. Analysis of hand forces in health a disease during maximum isometric grasping of cylinders. Medicine and Biological Engineering and Computing 1993;31:372– 6.
  • 20. Kong YK, Freivalds A. Evaluation of meat-hook handle shapes. Int J Ind Ergon 2003;32:13–23.
  • 21. Pheasant ST. Bodyspace: anthropometry, ergonomics and design. Philadelphia, PA, USA: Taylor & Francis; 1986.
  • 22. Ketchum LD, Thompson D, Pocock G, La C, Wallingford D. A clinical study of forces generated by the intrinsic muscles of the index finger and the extrinsic flexor and extensor muscles of the hand. The J Hand Surg [Am] 1978;3(6):571–8.
  • 23. Chao EYS, Opgrande JD, Axmear FE. Three-dimensional force analysis of finger joints in selected isometrics hand functions. J Biomech 1976;9:387–96.
  • 24. Chao EYS, An KN. Determination of internal forces in human hand. Journal of engineering mechanics division ASCE 1978;104:255–72.
  • 25. Karwowski W, Salvendy G, editors. Ergonomics in manufacturing. Dearborn, MI, USA: Society of Manufacturing Engineers; 1998.
  • 26. Kong YK, Freivalds A, Kim SE, Evaluation of handles in a maximum gripping task. Ergonomics 2004;47(12):1350–64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bd6e585-8ea3-4109-ba1b-bd963572f7d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.