PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self-similar solution of laser-produced plasma expansion into vacuum with kappa-distributed electrons

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
PLASMA-2015 International Conference on Research and Applications of Plasmas (7-11 September 2015 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The expansion of semi-infi nite laser produced plasma into vacuum is analyzed with a hydrodynamic model for cold ions assuming electrons modeled by a kappa-type distribution. Self-similar analytic expressions for the potential, velocity, and density of the plasma have been derived. It is shown that nonthermal energetic electrons have the role of accelerating the self-similar expansion.
Czasopismo
Rocznik
Strony
115--118
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Division des Milieux Ionisés, Centre de Développement des Technologies Avancées, Cité du 20 août 1956, B.P. 17, Baba-Hassen, Alger, Algérie, Tel.: +213 (0) 2135 1018, Fax: +213 (0) 2135 1039
autor
  • Division des Milieux Ionisés, Centre de Développement des Technologies Avancées, Cité du 20 août 1956, B.P. 17, Baba-Hassen, Alger, Algérie, Tel.: +213 (0) 2135 1018, Fax: +213 (0) 2135 1039
Bibliografia
  • 1. Hau, L. -N., & Fu, W. -Z. (2007). Mathematical and physical aspects of kappa velocity distribution. Phys. Plasmas, 14, 110702.
  • 2. Leubner, M. P. (2004). Fundamental issues on kappa--distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas, 11, 1308–1316.
  • 3. Huang, Y., Bi, Y., Duan, X., Lan, X., Wang, N., Tang, X., & He, Y. (2008). Energetic ion acceleration with a non-Maxwellian hot-electron tail. Appl. Phys. Lett., 92, 141504.
  • 4. Itina, T. E., Hermann, J., Delaporte, P., & Sentis, M. (2002). Laser-generated plasma plume expansion: Combined continuous-microscopic modeling. Phys. Rev. E, 66, 066406.
  • 5. Bennaceur-Doumaz, D., & Djebli, M. (2010). Modeling of laser induced plasma expansion in the presence of non-Maxwellian electrons. Phys. Plasmas, 17, 074501.
  • 6. Wickens, L. M., & Allen, J. E. (1979). Free expansion of a plasma with two electron temperatures. J. Plasma Phys., 22, 167–185.
  • 7. Schmalz, R. F. (1985). New selfsimilar solutions for the unsteady one dimensional expansion of a gas into a vacuum. Phys. Fluids, 28, 2923–2925.
  • 8. Shokoohi, R., & Abbasi, H. (2009). Influence of electron velocity distribution on the plasma expansion features. J. Appl. Phys., 106, 033309.
  • 9. Liu, B., Zhang, H., Fu, L. B., Gu, Y. Q., Zhang, B. H., Liu, M. P., Xie, B. S., Liu, J., & He, X. T. (2010). Ion jet generation in the ultra-intense laser interactions with rear-side concave. Laser Part. Beams, 28, 351–359.
  • 10. Sagisaka, A., Nagatomo, H., Daido, H., Pirozhkov, A. S., Ogura, K., Orimo, S., Mori, M., Nishiuchi, M., Yogo, A., & Kado, M. (2009). Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration. J. Plasma Phys., 75(5), 609–617.
  • 11. Flippo, K., Bartal, T., Beg, F., Chawla, S., Cobble, J., Gaillard, S., Hey, D., MacKinnon, A., MacPhee, A., Nilson, P., Offermann, D., Le Pape, S., & Schmitt, M. J. (2010). Omega EP, laser scalings and the 60 MeV barrier: First observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. J. Phys. Conf. Ser., 244, 022033.
  • 12. Summers, D., & Thorne, R. M. (1991). The modified plasma dispersion function. Phys. Fluids B, 3, 1835–1847.
  • 13. Sack, Ch., & Schamel, H. (1987). Plasma expansion into vacuum – a hydrodynamic approach. Phys. Rep., 156, 311–395.
  • 14. Zel’dovich, Ya. B., & Raizer, Yu. P. (1966). Physics of shock waves and high-temperature phenomena. New York: Academic Press.
  • 15. Yu, M. Y., & Luo, H. (1995). Adiabatic self-similar expansion of dust grains in a plasma. Phys. Plasmas, 2, 591–593.
  • 16. Cheng, J., Perrie, W., Wub, B., Tao, S., Edwardson, S. P., Dearden, G., & Watkins, K. G. (2009). Ablation mechanism study on metallic materials with a 10 ps laser under high fluence. Appl. Surf. Sci., 255, 8171–8175.
  • 17. Ivlev, A. V., & Fortov, V. E. (1999). One-dimensional plasma expansion into a vacuum in the field of an electromagnetic wave. Phys. Plasmas, 6, 1508–1514.
  • 18. Bara, D., Djebli, M., & Bennaceur-Doumaz, D. (2014). Combined effects of electronic trapping and non-thermal electrons on the expansion of laser produced plasma into vacuum. Laser Part. Beams, 32, 391–398.
  • 19. Zouganelis, I., Maksimovic, M., Vernet, N. M., Lamy, H., & Issautier, K. (2004). A transonic collisionless model of the solar wind. J. Astrophys., 606, 542–554.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bd38c16-64f7-4b94-b40f-a7c344cc7275
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.