PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction of a reduced mechanism for diesel-natural gas -hydrogen using HCCI model with Direct Relation Graph and Sensitivity Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the theory of direct relation graph (DRG) and sensitivity analysis (SA), a reduced mechanism for diesel CH4-H2 tri-fuel is constructed. The detailed mechanism of Lawrence Livermore National Laboratory, which has 654 elements and 2827 elementary reactions, is used for mechanism reduction with DRG. Some small thresholds are used in the process of simplifying the detailed mechanism via DRG, and a skeletal mechanism of 266 elements is obtained. Based on the framework of the skeletal mechanism, the time-consuming approach of sensitivity analysis is used for further simplification, and the skeletal mechanism is reduced to 262 elements. Validation of the reduced mechanism is done via a comparison of ignition delay time and laminar flame speed from the calculation using the reduced mechanism and the detailed mechanism or experiment. The reduced mechanism shows good agreement with the detailed mechanism and with related experimental data.
Słowa kluczowe
Rocznik
Strony
55--60
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., wz.
Twórcy
autor
  • Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
autor
  • Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
autor
  • School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, China
Bibliografia
  • 1. Shudo, T. & Takahashi, T. (2004). Influence of Reformed Gas Composition on HCCI Combustion Engine System fueled with DME and H2-CO-CO2 which are Onboard-reformed from Methanol Utilizing Engine Exhaust Heat. JSME Internat. J. 70(698), 2663–2669. DOI: 10.1299/kikaib.70.2663.
  • 2. Shudo, T. (2006). An HCCI combustion engine system using on-board reformed gases of methanol with waste heat recovery: ignition control by hydrogen. Int. J. Vehicle Des. 41(1–4), 206–226. DOI: 10.1504/IJVD.2006.009669.
  • 3. Li, H.L. & Karim, G.A. (2005). Exhaust emissions from an SI engine operating on gaseous fuel mixtures containing hydrogen. Int. J. Hydrogen. Energ. 30(13–14), 1491–1499. DOI: 10.1016/j.ijhydene.2005.05.007.
  • 4. Tutak, W., Jamrozik, A. & Grab-Rogalinski, K. (2020). Effect of natural gas enrichment with hydrogen on combus- tion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen. Energ. 1(119), 901–910. DOI: 10.1016/j. ijhydene.2020.01.080.
  • 5. D’Andrea, T., Henshaw, P., Ting, D.S.K. (2004). The addi- tion of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energ. 29(14), 1541–1552. DOI: 10.1016/j.ijhydene.2004.02.002.
  • 6. Sobiesiak, A., Uykur, C., Ting, S.K. & Henshaw, P.F. (2002). Hydrogen/Oxygen Additives Influence on Premixed Iso-Octane/Air Flame. SAE Technical Papers, 2002. DOI: 10.4271/2002-01-1710.
  • 7. Norbeck, J.M., Heffel, J.W., Durbin, T.D., Tabbara, B., Bowden, J.M. & Montano, M.C. (1996). Hydrogen fuel for surface transportation. Society of Automotive Engineers.
  • 8. Das, L.M. (1996). Hydrogen-oxygen reaction mechanism and its implication to hydrogen engine combustion. Int. J. Hydro- gen. Energ. 21(8), 703–715. DOI: 10.1016/0360-3199(95)00138-7.
  • 9. Feng, S.Q. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Math. Probl. Eng. (21), 1–12. DOI: 10.1155/2017/6825079.
  • 10. Lam, S.H. & Goussis, D.A. (1994). The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486. DOI: 10.1002/kin.550260408.
  • 11. Lu, T.F. & Law, C.K., (2008). A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154(4), 761–774. DOI: 10.1016/j.combustflame.2008.04.025.
  • 12. Goussis, D.A. & Skevis, G. (2005). Nitrogen chemistry controlling steps in methane-air premixed flames. 3rd M.I.T. Conference on Computational Fluid and Solid Mechanics. 2005, 650–653.
  • 13. Wu, Z.Z., Qiao, X.Q. & Huang, Z.(2013). A criterion based on computational singular perturbation for the construc- tion of reduced mechanism for dimethyl ether oxidation. J. Serb. Chem. Soc. 78(8), 1177–1188. DOI: 10.2298/JSC121122023W.
  • 14. Treviño, C. & Méndez, F. (1991). Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust. Sci. Technol. 78(4–6), 197–216. DOI: 10.1080/00102209108951749.
  • 15. Lu, T.F. & Law, C.K. (2006). Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane. Combust. Flame 144(1–2), 24–36. DOI: 10.1016/ j.combustflame.2005.02.015.
  • 16. Lu, T.F. & Law, C.K. (2005). A directed relation graph method for mechanism reduction. P Combust. Inst. 30(1), 1333–1341. DOI: 10.1016/j.proci.2004.08.145.
  • 17. Luo, Z.Y., Lu, T.F. & Liu, J.W. (2011). A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment. Combust. Flame 158(7), 1245–1254. DOI: 10.1016/j. combustflame.2010.12.009.
  • 18. Sankaran, R., Hawk, S.E.R., Chen, J.H., Lu, T.F. & Law, C.K. (2007). Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31(1), 1291–1298. DOI: 10.1016/j.proci.2006.08.025.
  • 19. Luo, Z.Y., Som, S., Sarathy, S.M., Plomer, M., Pitz, W.J., Longman, D.E. & Lu, T.F. (2014). Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. Combust. Theory Model. 18(2), 187–203. DOI: 10.1080/13647830.2013.872807.
  • 20. Luo, Z.Y., Plomer, M., Lu, T.F., Som, S. & Longman, D.E. (2012). A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combust. Theory Model. 99(2), 143–153. DOI: 10.1080/13647830.2011.631034.
  • 21. Tosatto, L., Bennett, B.A.V. & Smooke, M.D. (2013). Comparison of different DRG-based methods for the skeletal reduction of JP-8 surrogate mechanisms. Combust. Flame 160(9), 1572–1582. DOI: 10.1016/j.combustflame.2013.03.024.
  • 22. Lu, T.F. & Law, C.K. (2006). On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483. DOI: 10.1016/ j.combustflame.2006.04.017.
  • 23. Ciezki, H.K. & Adomeit, G. (1993). Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combust. Flame 93(4), 421–433. DOI: 10.1016/0010-2180(93)90142-P.
  • 24. Kumar, K., Freeh, J.E., Sung, C.J. & Huang, Y. (2007). Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures. J. Propul. Power 23(2), 428–436. DOI: 10.2514/1.24391.
  • 25. Kumar, R., Singhal, A., Katoch, A. & Kumar, S. (2020). Experimental Investigations on Laminar Burning Velocities of n-Heptane+ Air Mixtures at Higher Mixture Temperatures Using Externally Heated Diverging Channel Method. Energy Fuels 34(2), 2405–2416. DOI: 10.1021/acs.energyfuels.9b04249.
Uwagi
This work was supported by the Shanghai Government Science and Technology Commission under grant number 17170712100.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bd24068-7d07-423b-9c2a-29799ca8c203
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.