PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Flow and Heat Transfer Behavior of Liquid COMP-B3 in Slow Cook-off

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to investigate the flow and heat transfer characteristics of COMP-B3 under thermal stimulation, a series of slow cook-off experiments were designed and conducted, encompassing different sample sizes and heating conditions. The internal temperature profiles were captured using a high-speed data acquisition system. Subsequently, the internal flow and heat transfer conditions of the liquid COMP-B3 were analyzed through numerical simulations employing a non-Newtonian flow model. The results demonstrated the presence of heat convection within the liquid COMP-B3, regardless of sample sizes or heating conditions. However, it should be noted that the occurrence of heat convection is not necessarily observed at the onset of melting. The overall cook-off process can be categorized into three phases: solid (with melting), thermal conduction, and thermal convection. If convection occurs prior to the self-heating reaction, the direction of the flow field within the liquid COMP-B3 experiences a reversal near ignition. Additionally, a predictive method for the flow behaviour inside the liquid COMP-B3 during slow cook-off is proposed. Rough estimates of the flow conditions can be made based on the charge temperature, the internal temperature difference, and the characteristic length. Importantly, these phenomena are theoretically applicable to a wide range of mixed melt-cast explosives, extending beyond COMP-B3. The results provide additional reference value for further investigations into the ignition characteristics of mixed melt-cast explosives under thermal stimulation.
Słowa kluczowe
Rocznik
Strony
340--363
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100000, PR China
autor
  • Hubei Institute of Aerospace Chemical Technology, Xiangyang, 441000, PR China
autor
  • Science and Technology on Transient Impact Laboratory, No.208 Institute of China Ordnance Industries, Beijing, 102200, PR China
autor
  • Mechanical and Electrical College, North University of China, Taiyuan, 030051, PR China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100000, PR China
Bibliografia
  • [1] Hobbs, M.L.; Kaneshige, M.J.; Erikson, W.W.; Brown, J.A.; Anderson, M.U.; Todd, S.N.; Moore, D.G. Cookoff Experiments of a Melt Cast Explosive (Comp-B3). Combust. Flame. 2020, 213: 268-78; https://doi.org/10.1016/j.combustflame.2019.12.004.
  • [2] Wardell, J.; Maienschein, J. The Scaled Thermal Explosion Experiment. Proc. 12th Int. Detonation Symp., San Diego, US-CA, 2002.
  • [3] McClelland, M.A.; Maienschein, J.L.; Reaugh, J.E.; Tran, T.D.; Nichols, A.L.; Wardell, J.F. ALE3D Model Predictions and Experimental Analysis of the Cookoff Response of Comp B. JANNAF Meeting, Colorado Springs, US, 2003.
  • [4] McClelland, M.A.; Glascoe, E.A.; Nichols, A.L.; Schofield, S.P.; Springer, H.K. ALE3D Simulation of Incompressible Flow, Heat Transfer, and Chemical Decomposition of Comp B in Slow Cookoff Experiments. Proc. 15th Int. Detonation Symp., San Francisco, US-CA 2014.
  • [5] Glascoe, E.A.; Dehaven, M.R.; McClelland, M.; Greenwood, D.W.; Springer, H.K.; Maienschein, J.L. Mechanisms of Comp-B Thermal Explosions. Proc. 15th Int. Detonation Symp., San Francisco, US-CA, 2014.
  • [6] Asante, D.O.; Kim, S.; Chae, J.; Kim, H.; Oh, M. CFD Cook-Off Simulation and Thermal Decomposition of Confined High Energetic Material. Propellants. Explos. Pyrotech. 2015, 40(5): 699-705; https://doi.org/10.1002/prep.201400296.
  • [7] McCallen, R.; Dunn, T.; Nichols, A.; Reaugh, J.; McClelland, M. Modeling of Thermal Convection of Liquid TNT for Cook-off. Proc. Nuclear Explosives Code Development Conf., Monterey, US-CA, 2002.
  • [8] Hobbs, M.L.; Kaneshige, M.J.; Gilbert, D.W.; Marley, S.K.; Todd, S.N. Modeling TNT Ignition. J. Phys. Chem. A. 2009, 113(39): 10474-10487; https://doi.org/10.1021/jp906134f.
  • [9] Hobbs, M.L.; Kaneshige, M.J. The Effect of Venting on Cookoff of a Melt-castable Explosive (Comp-B). Sci. Technol. Energ. Mater. 2015, 76(3): 68-74.
  • [10] Sarangapani, R.; Ramavat, V.; Reddy, S.; Subramanian, P.; Sikder, A.K. Rheology Studies of NTO-TNT Based Melt-cast Dispersions and Influence of Particle-Dispersant Interactions. Powder Technol. 2015, 273: 118-124; https://doi.org/10.1016/j.powtec.2014.12.013.
  • [11] Zerkle, D.K.; Núñez, M.P.; Zucker, J.M. Molten Composition B Viscosity at Elevated Temperature. J. Energ. Mater. 2016, 34(4): 368-383; https://doi.org/10.1080/07370652.2015.1102179.
  • [12] Hobbs, M.L.; Kaneshige, M.J.; Erikson, W.W. Predicting Large-scale Effects During Cookoff of PBXs and Melt-castable Explosives. Proc. 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, US-MA, 2017.
  • [13] Davis, S.M.; Zerkle, D.K.; Smilowitz, L.B.; Henson, B.F.; Suvorova, N.A.; Remelius, D.K. Integrated Rheology Model: Explosive Composition B-3. J. Energ. Mater. 2018, 36(4): 398-411; https://doi.org/10.1080/07370652.2018.1451573.
  • [14] Davis, S.M.; Zerkle, D.K.; Smilowitz, L.B.; Henson, B.F. Molten Composition B-3 Yield Stress Model. AIP Conf. Proc. 2018, 1979: paper 150011; https://doi.org/10.1063/1.5044967.
  • [15] Davis, S.M.; Zerkle, D.K. Estimation of Yield Stress/Viscosity of Molten Octol. AIP Adv. 2018, 8: paper 055202; https://doi.org/10.1063/1.5027397.
  • [16] Du, L.-x.; Jin, S.-h.; Shu, Q.-h.; Li, L.-j.; Chen, K.; Chen, M.-l.; Wang, J.-f. The Investigation of NTO/HMX-based Plastic-bonded Explosives and Its Safety Performance. Def. Technol. 2021, 18(1): 72-80; https://doi.org/10.1016/j.dt.2021.04.002.
  • [17] Victor, A.C. Simple Calculation Methods for Munitions Cookoff Times and Temperatures. Propellants. Explos. Pyrotech. 1995, 20(5): 252-259; https://doi.org/10.1002/prep.19950200506.
  • [18] Ye, Q.; Yu, Y.-g. Numerical Analysis of Cook-off Behavior of Cluster Tubular Double-based Propellant. Appl. Therm. Eng. 2020, 181: paper 115972; https://doi.org/10.1016/j.applthermaleng.2020.115972.
  • [19] Slow Heating, Munitions Test Procedures. STANAG 4382 Ed. 2, 2003.
  • [20] Zhi, X.-Q.; Hu, S.-Q.; Li, J.J.; Xu, S.-P.; Li, Y. RDX-based Booster Explosive Response Character Under Slow Cook-Off Conditions. J. Energ. Mater. 2011, 29(2): 75-87; https://doi.org/10.1080/07370650903535515.
  • [21] Zhu, M.; Wang, S.-a.; Huang, H.; Huang, G.; Wu, F.; Sun, S.-h.; Li, B.; Xu, Z.-j. Numerical and Experimental Study on the Response Characteristics of Warhead in the Fast Cook-off Process. Def. Technol. 2021, 17(4): 1444-1452; https://doi.org/10.1016/j.dt.2020.08.001.
  • [22] Rajagopal, T.K.R.; Ramachandran, R.; James, M.; Gatlewar, S.C. Numerical nvestigation of Fluid Flow and Heat Transfer Characteristics on the Aerodynamics of Ventilated Disc Brake Rotor Using CFD. Therm. Sci. 2014, 18(2): 667-675; https://doi.org/10.2298/TSCI111219204R.
  • [23] Wen, Q.; Wang, Y.; Wang, G.; Chang, T.; Yan, L. Numerical Analysis of Response of a Fuze to Cook-off. J. Energ. Mater. 2019, 37(3): 340-355; https://doi.org/10.1080/07370652.2019.1615580.
  • [24] Hobbs, M.L.; Kaneshige, M.J.; Anderson, M.U. Cook-off of a Melt-castable Explosive (COMP-B). Proc. 27th JANNAF Propulsion Systems Hazards Joint Subcommittee Meeting, Monterrey, US- CA, 2012.
  • [25] Moore, D.W.; Burkardt, L.A.; McEwan, W. Viscosity and Density of the Liquid System TNT‐Picric Acid and Four Related Pure Materials. J. Chem. Phys. 1956, 25(6): 1235-1241; https://doi.org/10.1063/1.1743185.
  • [26] Parry, M.A.; Billon, H.H. Flow Behaviour of Molten 2,4,6-Trinitrotoluene (TNT) Between Concentric Cylinders. Rheol. Acta 1990, 29(5): 462-468; https://doi.org/10.1007/BF01376797.
  • [27] Parry, M.A.; Billon, H.H. A Note on the Coefficient of Viscosity of Pure Molten 2,4,6-Trinitrotoluene (TNT). Rheol. Acta 1988, 27: 661-663; https://doi.org/10.1007/BF01337463.
  • [28] Joshi, V.; Vadali, S.; Wasnik, R.; Jangid, S.; Maurya, M. Studies on Rheological Properties and Process Parameters of TNT based Castable High Explosive Compositions. Sci. Technol. Energ. Mater. 2017, 78(4): 87-92.
  • [29] Abdali, S.S.; Mitsoulis, E.; Markatos, N.C. Entry and Exit Flows of Bingham Fluids. J. Rheol. 1992, 36(2): 389-407; https://doi.org/10.1122/1.550350.
  • [30] Coussot, P. Slow Flows of Yield Stress Fluids: Yielding Liquids or Flowing Solids? Rheol. Acta 2018, 57(1): 1-14; https://doi.org/10.1007/s00397-017-1055-7.
  • [31] Jerkins, M.; Schröter, M.; Swinney, H.L.; Senden, T.J.; Saadatfar, M.; Aste, T. Onset of Mechanical Stability in Random Packings of Frictional Spheres. Phys. Rev. Lett. 2008, 101: paper 018301; https://doi.org/10.1103/PhysRevLett.101.018301.
  • [32] Liang, T.; Zhang, Y.; Ma, Z.; Guo, M.; Xiao, Z.; Zhang, J.; Dong, M.; Fan, J.; Guo, Z.; Liu, C. Energy Characteristics and Mechanical Properties of Cyclotrimethylenetrinitramine (RDX)-based Insensitive High-Energy Propellant. J. Mater. Res. Technol. 2020, 9(6): 15313-15323; https://doi.org/10.1016/j.jmrt.2020.09.132.
  • [33] Sanhye, W.; Dubois, C.; Laroche, I.; Pelletier, P. Numerical Modeling of the Cooling Cycle and Associated Thermal Stresses in a Melt Explosive Charge. AIChE J. 2016, 62(10): 3797-3811; https://doi.org/10.1002/aic.15288.
  • [34] Turner, R.H.; Cimbala, J.M.; Yunus, A.; Cengel, D. Fundamentals of Thermal-Fluid Sciences. 5th Ed., McGraw-Hill Education, New York, 2016, pp. 829-830; ISBN 978-0-07-802768-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2bd143b2-3c7d-470f-93a9-3c5223ef4b71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.